当前位置:首页 > 资源分类 > 机器学习电子书下载

机器学习电子书

零起点Python足彩大数据与机器学习实盘分析 查看详情
R语言机器学习 查看详情
大数据与机器学习:实践方法与行业案例

(1)从数据信息、基本服务平台、统计分析方法、应用领域4个层面,义情景化方法解读数据信息从获得、预备处理、发掘、模型、依据解析与呈现到系统软件运用的步骤,及其深度学习的关键

查看详情
白话大数据与机器学习 查看详情
机器人操作系统ROS原理与应用

机器人操作系统ROS原理与应用 主要分析ROS的核心功能实现原理,探讨基于ROS的智能机器人软件系统优化开发方法与实现技术。本书主要分为四部分:智能机器人发展现状和ROS基本框架;ROS核心功

查看详情
Python机器学习:预测分析核心算法

在学习和研究机器学习的时候,面临令人眼花缭乱的算法,机器学习新手往往会不知所措。本书从算法和Python语言实现的角度,帮助读者认识机器学习。 本书专注于两类核心的算法族,即惩罚

查看详情
机器学习:Go语言实现 查看详情
统计机器学习导论

《统计机器学习导论》 对机器学习的关键知识点进行了全面讲解,帮助读者顺利完成从理论到实践的过渡。书中首先介绍用于描述机器学习算法的统计与概率的知识,接着详细分析机器学习技

查看详情
分布式机器学习:算法、理论与实践

《分布式机器学习:算法、理论与实践》 旨在全面介绍分布式机器学习的现状,深入分析其中的核心技术问题,并且讨论该领域未来的发展方向。 全书共12章。第1章是绪论,向大家展示分布式

查看详情
机器人控制系统的设计与MATLAB仿真:基本设计方法

《机器人控制系统的设计与MATLAB仿真:先进设计方法》 系统地介绍了机械手为主的先进控制器的设计和分析方法,是作者多年从事机器人控制系统教学和科研工作的结晶,同时融入了国内外同

查看详情
Arduino创意机器人入门

机器人教育融机械、传感与控制等内容为一体,让学生在手脑并用解决实际问题的过程中,有效地提高逻辑思维能力、判断能力、动手能力和创新能力,是实施素质教育的一个重要平台。作为

查看详情
机器学习与R语言

R本身是一款十分优秀的数据分析和数据可视化软件。《 机器学习与R语言 》通过将实践案例与核心的理论知识相结合,提供了你开始将机器学习应用到你自己项目中所需要的知识。《机器学习

查看详情
实用机器学习

《实用机器学习》 介绍了实用机器学习的工作流程,主要从实用角度进行了描述,没有数学公式和推导。本书涵盖了数据收集与处理、模型构建、评价和优化、特征的识别、提取和选择技术、

查看详情
机器学习项目开发实战

本书通过一系列有趣的实例,由浅入深地介绍了机器学习这一炙手可热的新领域,并且详细介绍了适合机器学习开发的Microsoft F#语言和函数式编程,引领读者深入了解机器学习的基本概念、核

查看详情
Python机器学习

Python机器学习中文版(Sebastian Raschka著),一共13章,含机器学习算法、模型评估、集成学习、web应用、神经网络等,想要学习机器语言的可以下载学习

查看详情
Spark MLlib机器学习实践

这是一本细致介绍Spark MLlib程序设计的图书,入门简单,示例丰富,内容由浅而深,采取实例和理论相结合的方式,讲解细致直观,适合Spark MLlib初学者、大数据分析和挖掘人员

查看详情
机器人来了:人工智能时代的人类生存法则

如果将来我们的生活完全被智能机器人所掌控,那么在这样一种环境中,我们人类将如何生存? 就在不久前,工厂的工人们开始担心,不久以后,他们的工作可能将会被智能机器人所替代。心

查看详情
机器视觉技术

这书分左右几篇详细介绍机器视觉的组成、图象处理方式及其运用案例。 上篇机器视觉基础理论与优化算法包含:机器视觉、图象处理、总体目标获取、边缘检测、图象光滑解决、几何图形主

查看详情
机器学习基础教程

《机器学习基础教程》是一本关于机器学习的电子书资源,涉及机器学习、基础教程等相关内容,本文提供大小为57MB的扫描中文PDF格式电子书下载,希望大家能够喜欢。

查看详情
Spark MLlib机器学习:算法、源码及实战详解

《Spark MLlib机器学习:算法、源码及实战详解》以Spark 1.4.1版本源码为切入点,全面并且深入地解析Spark MLlib模块,着力于探索分布式机器学习的底层实现。 《Spark MLlib机器学习:算法、源码及

查看详情
机器人简史

《机器人简史(第二版)》 将向读者展现一个绚丽多姿的机器人世界。在这本书里,你不但可以看到指南车、记里鼓车、自动玩偶等古代机器人,还可以领略当今阿特拉斯(Atlas)、阿西莫(

查看详情
与机器人共舞

一本好书了解人工智能技术的今生前世,一本好书释放人工智能技术的创新之路。 在《 与机器人共舞 》一书中,人工智能技术时期的高新科技预言家、硅谷独家代理小编、普利策奖者约翰马

查看详情
R语言实战:机器学习与数据分析 查看详情
机器学习Web应用

Python是一种通用性计算机语言,都是一种相对性非常容易学习培训的語言。因而,大数据工程师在为中小规模纳税人的uci数据集制做原形、保持数据可视化和剖析统计数据时,常常挑选应用P

查看详情
机器人PLC控制及应用实例

PLC可保持对单轴和多轴的部位操纵、速率操纵及瞬时速度操纵,再加新健身运动控制模块的开发设计及专业软件的发布,挑选PLC作智能机器人运动控制器是不错的计划方案。《 机器人PLC控制及应

查看详情
机器学习 相关笔记精选
网友NO.744791

Python 机器学习库 NumPy

在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础库。本文针对Python 机器学习库 NumPy入门教程,感兴趣的朋友一起学习吧 NumPy是一个Python语言的软件包,它非常适合于科学计算。在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础库。 本文是对它的一个入门教程。 介绍 NumPy是一个用于科技计算的基础软件包,它是Python语言实现的。它包含了: 强大的N维数组结构 精密复杂的函数 可集成到C/C++和Fortran代码的工具 线性代数,傅里叶变换以及随机数能力 除了科学计算的用途以外,NumPy也可被用作高效的通用数据的多维容器。由于它适用于任意类型的数据,这使得NumPy可以无缝和高效的集成到多种类型的数据库中。 获取NumPy 由于这是一个Python语言的软件包,因此需要你的机器上首先需要具备Python语言的环境。关于……

网友NO.691144

Javascript实现的机器学习类库的原理

机器学习(Machine Learning)在最近几年绝对称的上是大火,越来越多的公司和资本投入了巨大资源和金钱到这个新上位的技术新宠中,尤其是随着更多的各种机器学习相关类库的出现和发展,更多新的技术已经被应用到了机器学习中, 现在大家可以看到, Python不再是唯一个老牌机器学习的必用语言, 对于现代神经网络(neural networks)语言不再是一个问题, 你基本可以使用任何的编程语言, 包括今天我们介绍的标准前端开发语言 - Javascript Web的整个体系已经在近几年中有了长足的发展, 虽然 Javascript 和 node.js的使用案例还远远无法和Java/Python来媲美。 但是 也足够应用到很多机器学习的环境中去啦。而且最大的优势在于 - 一个浏览器就可以帮你搞定了一切 ! 虽然, 基于Javascript的机器学习类库还非常的早期,很多依旧在开发状态下, 但是他们的确已经……

网友NO.627606

python机器学习之贝叶斯分类

一、贝叶斯分类介绍 贝叶斯分类器是一个统计分类器。它们能够预测类别所属的概率,如:一个数据对象属于某个类别的概率。贝叶斯分类器是基于贝叶斯定理而构造出来的。对分类方法进行比较的有关研究结果表明:简单贝叶斯分类器(称为基本贝叶斯分类器)在分类性能上与决策树和神经网络都是可比的。在处理大规模数据库时,贝叶斯分类器已表现出较高的分类准确性和运算性能。基本贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的。这一假设也被称为:类别条件独立,它可以帮助有效减少在构造贝叶斯分类器时所需要进行的计算。 二、贝叶斯定理 p(A|B) 条件概率 表示在B发生的前提下,A发生的概率; 基本贝叶斯分类器通常都假设各类别是相互独立的,即各属性的取值是相互独立的。对于特定的类别且其各属性相互独立,就会有……

网友NO.262687

总结Python常用的机器学习库

Python在科学计算中用途广泛:计算机视觉、人工智能、数学、天文等。它同样适用于机器学习也是意料之中的事。 这篇文章就列举并描述Python的最有用的机器学习工具和库。这个列表中,我们不要求这些库是用Python写的,只要有Python接口就够了。 我们的目的不是列出Python中所有机器学习库(搜索“机器学习”时Python包索引(PyPI)返回了139个结果),而是列出我们所知的有用并且维护良好的那些。 另外,尽管有些模块可以用于多种机器学习任务,我们只列出主要焦点在机器学习的库。比如,虽然Scipy1包含一些聚类算法,但是它的主焦点不是机器学习而是全面的科学计算工具集。因此我们排除了Scipy(尽管我们也使用它!)。 另一个需要提到的是,我们同样会根据与其他科学计算库的集成效果来评估这些库,因为机器学习(有监督的或者无监督的)也是数据处理系……

网友NO.715178

python实现机器学习多元线性回归总结

总体思路与一元线性回归思想一样,现在将数据以矩阵形式进行运算,更加方便。 一元线性回归实现代码 下面是多元线性回归用Python实现的代码: import numpy as npdef linearRegression(data_X,data_Y,learningRate,loopNum): W = np.zeros(shape=[1, data_X.shape[1]]) # W的shape取决于特征个数,而x的行是样本个数,x的列是特征值个数 # 所需要的W的形式为 行=特征个数,列=1 这样的矩阵。但也可以用1行,再进行转置:W.T # X.shape[0]取X的行数,X.shape[1]取X的列数 b = 0 #梯度下降 for i in range(loopNum): W_derivative = np.zeros(shape=[1, data_X.shape[1]]) b_derivative, cost = 0, 0 WXPlusb = np.dot(data_X, W.T) + b # W.T:W的转置 W_derivative += np.dot((WXPlusb - data_Y).T, data_X) # np.dot:矩阵乘法 b_derivative += np.dot(np.ones(shape=[1, data_X.shape[0]]), WXPlusb - data_Y) cost += (WXPlusb - data_Y)*(WXPlusb - data_Y) W_derivative = W_derivative / data_X.shape[0] # data_X.sh……

网友NO.546773

Python机器学习算法之k均值聚类(k-means)

一开始的目的是学习十大挖掘算法(机器学习算法),并用编码实现一遍,但越往后学习,越往后实现编码,越发现自己的编码水平低下,学习能力低。这一个k-means算法用Python实现竟用了三天时间,可见编码水平之低,而且在编码的过程中看了别人的编码,才发现自己对numpy认识和运用的不足,在自己的代码中有很多可以优化的地方,比如求均值的地方可以用mean直接对数组求均值,再比如去最小值的下标,我用的是argsort排序再取列表第一个,但是有argmin可以直接用啊。下面的代码中这些可以优化的并没有改,这么做的原因是希望做到抛砖引玉,欢迎大家丢玉,如果能给出优化方法就更好了 一.k-means算法 人以类聚,物以群分,k-means聚类算法就是体现。数学公式不要,直接用白话描述的步骤就是: 1.随机选取k个质心(k值取决于你想聚成几类) 2.计算样……

Copyright 2018-2020 xz577.com 码农之家

本站所有电子书资源不再提供下载地址,只分享来路

免责声明:网站所有作品均由会员网上搜集共同更新,仅供读者预览及学习交流使用,下载后请24小时内删除

版权投诉 / 书籍推广 / 赞助:QQ:520161757