当前位置:主页 > 计算机电子书 > 课后答案 > 数学分析习题答案下载
数学分析 (一)反馈 / 投诉

《数学分析 (一)》课后答案

2021-04-29 08:45:49 类别:数学分析

  • 更新:2021-04-29 08:45:49
  • 大小:86.1 MB
  • 出版:科学出版社
  • 作者:刘名生、冯伟贞、韩彦昌
  • 类别:数学分析
  • 格式:PDF

网盘下载 本地下载

扫二维码手机浏览

资源介绍

给大家带来的是关于数学分析相关的课后习题答案下载,介绍了关于数学分析方面的内容,由辛飞昂网友提供,本资源目前已被728人关注,高等院校数学分析类教材综合评分为:7.6分。

本书介绍了数学分析的基本概念、基本理论和方法,包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等,全书共分三册,本册内容包括实数与数列极限、函数与函数极限、函数的连续性、微分与导数、导数的应用、实数集的稠密性与完备性,本书在内容的安排上深入浅出,表达清楚,系统性和逻辑性强,书中列举了大量例题来说明数学分析的定义、定理及方法,并提供了丰富的思考题和习题,便于教师教学与学生自学,每章末都有小结,并配有复习题,对该章的主要内容作了归纳和总结,方便学生系统复习。

本书可作为高等师范院校数学各专业学生的教学用书,也可供相关专业的教师和科技工作者参考。

目录

  • 第1章 实数与数列极限
  •  1.0 预备知识
  •   1.0.1 一些常用的记号
  •   1.0.2 逻辑命题的否命题
  •   1.0.3 特殊的数集
  •  1.1 实数的基本性质与常用不等式
  •   1.1.1 实数的基本性质
  •   1.1.2 一些常用的不等式
  •  1.2 数列与数列极限的概念
  •   1.2.1 数列的定义
  •   1.2.2 数列极限的定义
  •  1.3 收敛数列的性质
  •   1.3.1 收敛数列的重要性质
  •   1.3.2 无穷小与无穷大数列
  •  1.4 发散数列与子列的概念
  •   1.4.1 发散数列
  •   1.4.2 数列的子列的概念
  •  1.5 确界原理
  •   1.5.1 有界集、上确界和下确界的概念
  •   1.5.2 确界的数列刻画
  •   1.5.3 数集确界的存在性与唯一性
  •  1.6 数列收敛的判别法
  •   1.6.1 迫敛性定理
  •   1.6.2 单调有界定理
  •   1.6.3 致密性定理与Cauchy收敛准则
  •  小结
  •  复习题
  • 第2章 函数与函数极限
  •  2.0 预备知识
  •  2.1 映射与函数的概念
  •   2.1.1 映射的概念
  •   2.1.2 函数的概念
  •   2.1.3 函数的四种特性
  •   2.1.4 函数的基本运算
  •   2.1.5 反函数
  •   2.1.6 初等函数
  •  2.2 X→∞时函数极限的概念
  •   2.2.1 引例
  •   2.2.2 x趋于∞时的函数极限的定义
  •   2.2.3 三种函数极限的关系
  •   2.2.4 典型例子
  •  2.3 X→Xo时函数极限的概念
  •   2.3.1 引例
  •   2.3.2 X趋于X0时函数极限的定义
  •   2.3.3 三种函数极限的关系
  •   2.3.4 典型例子
  •  2.4 函数极限的性质
  •  2.5 函数极限存在的判别法
  •   2.5.1 迫敛性定理
  •   2.5.2 归结原则——tteine定理
  •   2.5.3 函数的单调有界定理
  •   2.5.4 Cauchy准则
  •  2.6 无穷小量和无穷大量
  •   2.6.1 无穷大量与无穷小量的定义与性质
  •   2.6.2 无穷小量的比较
  •  小结
  •  复习题
  • 第3章 函数的连续性
  •  3.1 连续函数的概念
  •   3.1.1 函数在一点X0连续的定义
  •   3.1.2 函数的左连续与右连续及区间上的连续函数
  •   3.1.3 典型例子
  •  3.2 函数间断的概念
  •   3.2.1 间断点的定义及其分类
  •   3.2.2 典型例子
  •  3.3 连续函数的局部性质与初等函数的连续性
  •   3.3.1 局部性质
  •   3.3.2 初等函数的连续性
  •   3.3.3 应用函数的连续性求函数极限
  •  3.4 连续函数的整体性质
  •   3.4.1 有界性定理和最值定理
  •   3.4.2 零点定理与介值定理
  •   3.4.3 一致连续性定理
  •  小结
  •  复习题
  • 第4章 微分与导数
  •  4.1 微分与导数的概念
  •   4.1.1 微分的概念
  •   4.1.2 导数的概念
  •   4.1.3 可微与可导的关系
  •   4.1.4 可微函数与可导函数
  •  4.2 求导方法与导数公式
  •   4.2.1 用定义求函数的导数
  •   4.2.2 导数的四则运算法则
  •   4.2.3 反函数求导法则
  •   4.2.4 复合函数求导法则
  •  4.3 微分的计算与应用
  •   4.3.1 微分的运算法则
  •   4.3.2 微分在近似计算中的应用
  •  4.4 高阶导数与高阶微分
  •   4.4.1 高阶导数
  •   4.4.2 高阶微分
  •  4.5 参数方程所表示的函数的导数
  •   4.5.1 参数方程与函数
  •   4.5.2 用参数方程表示的函数的导数
  •   4.5.3 用极坐标方程表示的曲线的切线
  •   4.5.4 参数方程所表示的函数的高阶导数
  •  小结
  •  复习题
  • 第5章 导数的应用
  •  5.1 Fermat定理和Darboux定理
  •   5.1.1 极值的定义与Fermat定理
  •   5.1.2 Darboux定理
  •  5.2 中值定理
  •   5.2.1 Rolle中值定理
  •   5.2.2 Lagrange中值定理
  •   5.2.3 Cauchy中值定理
  •  5.3 不定式极限
  •   5.3.1 L’Hospital法则
  •   5.3.2 其他类型的不定式极限
  •  5.4 Taylor公式
  •   5.4.1 带Peano型余项的Tylor公式
  •   5.4.2 带Lagrange型余项的Tkylor公式
  •   5.4.3 若干初等函数的Maclaurin公式
  •   5.4.4 Tkylor公式应用举例
  •  5.5 函数的单调性与凸性
  •   5.5.1 函数的单调性
  •   5.5.2 函数的凸性
  •   5.5.3 曲线的拐点
  •   5.5.4 单调性与凸性的应用——证明一些不等式
  •  5.6 函数的极值与最值
  •   5.6.1 函数的极值
  •   5.6.2 函数的最值
  •  5.7 函数作图
  •   5.7.1 渐近线
  •   5.7.2 函数图形的描绘
  •  小结
  •  复习题
  • 第6章 实数集的稠密性与完备性
  •  6.1 实数集的稠密性
  •   6.1.1 两个实数的大小关系
  •   6.1.2 实数集的稠密性
  •  6.2 实数集的完备性
  •   6.2.1 区间套定理
  •   6.2.2 有限覆盖定理
  •   6.2.3 聚点定理
  •   6.2.4 实数集完备性基本定理的等价性
  •  6.3 上极限和下极限简介
  •  小结
  •  复习题
  • 习题答案或提示
  • 参考文献
  • 附录
  • 索引

以上就是本次关于书籍资源的介绍和部分内容,我们还整理了以往更新的其它相关电子书资源内容,可以在下方直接下载,关于相关的资源我们在下方做了关联展示,需要的朋友们也可以参考下。


下载地址

下载地址:网盘下载

数学分析相关资源

留言评论

欢迎发表评论:

联系我们

邮件联系:3522365@qq.com

QQ联系:3522365