当前位置:首页 > 编程教程 > Python技术文章 > Python实现多进程的四种方式

Python实现多进程的方法总结

  • 发布时间:
  • 作者:码农之家
  • 点击:91

这篇文章主要知识点是关于python、多进程、的内容,如果大家想对相关知识点有系统深入的学习,可以参阅以下电子书

Python黑客攻防入门
  • 类型:黑客技术大小:63.1 MB格式:PDF作者:赵诚文
立即下载

Python实现多进程的四种方式

方式一: os.fork()

# -*- coding:utf-8 -*-
"""
pid=os.fork()
  1.只用在Unix系统中有效,Windows系统中无效
  2.fork函数调用一次,返回两次:在父进程中返回值为子进程id,在子进程中返回值为0
"""
import os
pid=os.fork()
if pid==0:
  print("执行子进程,子进程pid={pid},父进程ppid={ppid}".format(pid=os.getpid(),ppid=os.getppid()))
else:
  print("执行父进程,子进程pid={pid},父进程ppid={ppid}".format(pid=pid,ppid=os.getpid()))

方式二: 使用multiprocessing模块: 创建Process的实例,传入任务执行函数作为参数

# -*- coding:utf-8 -*-
"""
Process常用属性与方法:
  name:进程名
  pid:进程id
  run(),自定义子类时覆写
  start(),开启进程
  join(timeout=None),阻塞进程
  terminate(),终止进程
  is_alive(),判断进程是否存活
"""
import os,time
from multiprocessing import Process
def worker():
  print("子进程执行中>>> pid={0},ppid={1}".format(os.getpid(),os.getppid()))
  time.sleep(2)
  print("子进程终止>>> pid={0}".format(os.getpid()))
def main():
  print("主进程执行中>>> pid={0}".format(os.getpid()))
  ps=[]
  # 创建子进程实例
  for i in range(2):
    p=Process(target=worker,name="worker"+str(i),args=())
    ps.append(p)
  # 开启进程
  for i in range(2):
    ps[i].start()
  # 阻塞进程
  for i in range(2):
    ps[i].join()
  print("主进程终止")
if __name__ == '__main__':
  main()

方式三: 使用multiprocessing模块: 派生Process的子类,重写run方法

# -*- coding:utf-8 -*-
import os,time
from multiprocessing import Process
class MyProcess(Process):
  def __init__(self):
    Process.__init__(self)
  def run(self):
    print("子进程开始>>> pid={0},ppid={1}".format(os.getpid(),os.getppid()))
    time.sleep(2)
    print("子进程终止>>> pid={}".format(os.getpid()))
def main():
  print("主进程开始>>> pid={}".format(os.getpid()))
  myp=MyProcess()
  myp.start()
  # myp.join()
  print("主进程终止")
if __name__ == '__main__':
  main()

方式四: 使用进程池Pool

# -*- coding:utf-8 -*-
import os,time
from multiprocessing import Pool
def worker(arg):
  print("子进程开始执行>>> pid={},ppid={},编号{}".format(os.getpid(),os.getppid(),arg))
  time.sleep(0.5)
  print("子进程终止>>> pid={},ppid={},编号{}".format(os.getpid(),os.getppid(),arg))
def main():
  print("主进程开始执行>>> pid={}".format(os.getpid()))
  ps=Pool(5)
  for i in range(10):
    # ps.apply(worker,args=(i,))     # 同步执行
    ps.apply_async(worker,args=(i,)) # 异步执行
  # 关闭进程池,停止接受其它进程
  ps.close()
  # 阻塞进程
  ps.join()
  print("主进程终止")
if __name__ == '__main__':
  main()

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对码农之家的支持。如果你想了解更多相关内容请查看下面相关链接

以上就是本次给大家分享的关于java的全部知识点内容总结,大家还可以在下方相关文章里找到相关文章进一步学习,感谢大家的阅读和支持。

您可能感兴趣的文章:

  • python多进程读图提取特征存npy方法详解
  • Python多进程fork()函数详解
  • 实例分析Python多进程池 multiprocessing Pool的使用
  • 总结Python中并行(多进程)方法
  • 实例分析Python实现的多进程和多线程功能
  • python进程 相关电子书
    学习笔记
    网友NO.356054

    Python多进程multiprocessing用法实例分析

    本文实例讲述了Python多进程multiprocessing用法。分享给大家供大家参考,具体如下: mutilprocess简介 像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多。 简单的创建进程: import multiprocessingdef worker(num): """thread worker function""" print 'Worker:', num returnif __name__ == '__main__': jobs = [] for i in range(5): p = multiprocessing.Process(target=worker, args=(i,)) jobs.append(p) p.start() 确定当前的进程,即是给进程命名,方便标识区分,跟踪 import multiprocessingimport timedef worker(): name = multiprocessing.current_process().name print name, 'Starting' time.sleep(2) print name, 'Exiting'def my_service(): name = multiprocessing.current_process().name print name, 'Starting' time.sleep(3) print name, 'Exiting'if __name__ == '__main__': service = multiprocessing.Process(name='my_service', target=my_service) worker_1 = multiprocessi……

    网友NO.144965

    python多进程控制学习小结

    前言: python多进程,经常在使用,却没有怎么系统的学习过,官网上面讲得比较细,结合自己的学习,整理记录下官网:https://docs.python.org/3/library/multiprocessing.html multiprocessing简介 multiprocessing是python自带的多进程模块,可以大批量的生成进程,在服务器为多核CPU时效果更好,类似于threading模块。相对于多线程,多进程由于独享内存空间,更稳定安全,在运维里面做些批量操作时,多进程有更多适用的场景 multiprocessing包提供了本地和远程两种并发操作,有效的避开了使用子进程而不是全局解释锁的线程,因此,multiprocessing可以有效利用到多核处理 Process类 在multiporcessing中,通过Process类对象来批量产生进程,使用start()方法来启动这个进程 1.语法 multiprocessing.Process(group=None,target=None,name=None,args=(),kwargs={},*) group: 这个参数一般为空,它只是为了兼容threading.Tr……

    网友NO.829949

    Python并发:多线程与多进程的详解

    本篇概要 1.线程与多线程 2.进程与多进程 3.多线程并发下载图片 4.多进程并发提高数字运算 关于并发 在计算机编程领域,并发编程是一个很常见的名词和功能了,其实并发这个理念,最初是源于铁路和电报的早期工作。比如在同一个铁路系统上如何安排多列火车,保证每列火车的运行都不会发生冲突。 后来在20世纪60年代,学术界对计算机的并行计算开始进行研究,再后来,操作系统能够进行并发的处理任务,编程语言能够为程序实现并发的功能。 线程与多线程 什么是线程 一个线程可以看成是一个有序的指令流(完成特定任务的指令),并且可以通过操作系统来调度这些指令流。 线程通常位于进程程里面,由一个程序计数器、一个堆栈和一组寄存器以及一个标识符组成。这些线程是处理器可以分配时间的最小执行单元。 线程之间是可以共享内存……

    <
    1
    >

    Copyright 2018-2020 www.xz577.com 码农之家

    版权投诉 / 书籍推广 / 赞助:520161757@qq.com