标签分类 热门分类
当前位置:首页 > 人工智能电子书 > TensorFlow电子书网盘下载
深度学习利器:TensorFlow程序设计 深度学习利器:TensorFlow程序设计
java1234

java1234 提供上传

资源
39
粉丝
14
喜欢
152
评论
11

    深度学习利器:TensorFlow程序设计 PDF 完整版

    TensorFlow电子书
    • 发布时间:

    给大家带来的一篇关于TensorFlow相关的电子书资源,介绍了关于深度学习、TensorFlow、程序设计方面的内容,本书是由Geekbang出版,格式为PDF,资源大小5 MB,武维编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:8.1,更多相关的学习资源可以参阅 人工智能电子书、等栏目。

  • 深度学习利器:TensorFlow程序设计 PDF 下载
  • 下载地址:https://pan.baidu.com/s/1Soih5LTU3rtevYn3i6JmM
  • 分享码:lu08
  • 在工业界,TensorFlow 比其他框架更具有优势。TensorFlow 支持异构设备的分布式计算,使得上千万、上亿数据量的模型能够有效地利用机器资源进行训练。TensorFlow 支持卷积神经网络、循环神经网络,这些都是在计算机视觉、语音识别、自然语言处理方面最流行的深度神经网络。TensorFlow 支持从研究团队快速迁移学习模型到生产团队,实现了研究团队发布模型,生产团队验证模型,构建起了模型研究到生产实践的桥梁。TensorFlow 支持直接面向终端用户的移动端(Android 系统)以及一些智能产品的嵌入式开发。另外,TensorFlow 有出色的版本管理和详细的官方文档。

    本教程TensorFlow 程序设计中的关键技术主要包括以下几个方面。

    TensorFlow 编程基础及实践:主要包括 TensorFlow 变量、TensorFlow 应用架构、TensorFlow 可视化技术、GPU 使用、以及 HDFS 集成使用等。
    TensorFlow 系统架构及 C/C++ 编程 API:主要包括 Client,Master,Worker,Kernel 的相关系统组件及运行方式,以及采用 C++ API 去训练模型,提供更好的运算性能及更好地控制 GPU 内存的分配。
    分布式 TensorFlow 技术:主要包括分布式 TensorFlow 编程 API;分布式 TensorFlow MNIST 模型;梯度向降法在分布式 TensorFlow 中的性能分析,包括 Async-SGD,Sync-SGD,Sync-SGDwith backups 算法。
    TensorFlow 与卷积神经网络:主要包括卷积神经网络的特征图、卷积核,池化操作等关键技术;使用 TensorFlowAPI 构建卷积神经网络;TensorFlow Cifar10,InceptionV3 及 Vgg19 模型的架构和代码。
    TensorFlow 与自然语言处理模型:主要包括 Word2Vec 数学原理;近义词模型;循环神经网络(RecurrentNeural Network, RNN)技术原理;长短期记忆网络(LongShort-Term Memory,LSTM)技术原理;TensorFlow 语言预测模型;TensorFlow 的机器翻译模型。
    TensorFlow 在智能终端中的应用:基于看花识名 APP,讲解了 TensorFlow 在 Android 智能终端中的应用。主要包括:模型训练;模型参数量化处理;TensorFlowAndroid 开发环境的构建及相关开发 API。

    目录

    • 第1章 深度学习简介
    • 第2章 TensorFlow环境搭建
    • 第3章 TensorFlow入门
    • 第4章 深层神经网络
    • 第5章 MNIST数字识别问题
    • 第6章 图像识别与卷积神经网络
    • 第7章 图像数据处理
    • 第8章 循环神经网络
    • 第9章 自然语言处理
    • 第10章 TensorFlow高层封装
    • 第11章 TensorBoard可视化
    • 第12章 TensorFlow计算加速

    上一篇:Arduino创意机器人入门  下一篇:供应链管理精益实战手册

    展开 +

    收起 -

     
    TensorFlow 相关电子书
    关于TensorFlow的学习笔记
    网友NO.366754

    PyTorch的深度学习入门之PyTorch安装和配置

    前言 深度神经网络是一种目前被广泛使用的工具,可以用于图像识别、分类,物体检测,机器翻译等等。深度学习(DeepLearning)是一种学习神经网络各种参数的方法。因此,我们将要介绍的深度学习,指的是构建神经网络结构,并且运用各种深度学习算法训练网络参数,进而解决各种任务。本文从PyTorch环境配置开始。PyTorch是一种Python接口的深度学习框架,使用灵活,学习方便。还有其他主流的深度学习框架,例如Caffe,TensorFlow,CNTK等等,各有千秋。笔者认为,初期学习还是选择一种入门,不要期望全都学会。须知,发力集中才能深入挖掘。乱花渐欲迷人眼,选择适合自己的,从一而终,相信会对科研大有裨益! *************************************************** 说明:本文乃至本系列全部文章都是在PyTorch0.2版本下做的。现在版本更新了很多,会有一些API的更改,请大家注意Follow最新的变化,以免由于版本问题受到困扰。 *************************************************** 1.环境说明 PyTorch目前支持OSX和Linux两种系统,并且支持多种安装方式。在官网上介绍了基于conda,pip和源代码编译几种不同的安装方式。支持的Python版本有2.7,3.5和3.6。鉴于深度学习需要的计算量一般比较大,强烈建议找到一个有独立显卡的电脑来展开学习,当然没有显卡也能……

    网友NO.832232

    《Python深度学习》书评、读书笔记

    读者评价一 现阶段最浅显易懂的深度学习新手入门书,由Keras鼻祖落笔。高手不仅技术性能得,文采都不通常,确实就是说以便让尽量多的人可以应用深度学习而写的这这书,包含了深度学习的基本知识、Keras应用方式及其深度学习最好实践活动。 学习培训这书必须具有基本的PHP专业知识,但不用深度学习或是深度学习工作经验,也不用深奥的数学知识,高中数学水准得以看懂这书。 读者评价二 这这书从6月12号那一天老总递到我手上,到今日恰好六周,你在期内我逐字逐句地啃了这这书,并在每星期的星期二和星期五中午给组里的别人讲这这书,每一次讲3个钟头。直至5分钟前不久说完最终一章,写了180页的幻灯片。 感受从何说起呢?先讲Keras吧,这这书的创作者是Keras的创作者,因此这书主要详细介绍Keras在deeplearning中的各种各样使用方法。Keras容易入门,觉得用Keras写deeplearning的编码就跟用PHP相同,能够便捷地把想起的物品用几行编码表达。例如今日想写个convnet+fullyconnectedlayer的model归类一下下MNIST,要是用TensorFlow得话将会要前因后果写许多编码,可是用Keras得话要是不上十行就拿下了,随后就能够跑了,就跟跑HelloWorld相同简易。当你要来个transferlearning,那也非常简单,Keras有许多训炼好的model,立即load1个,再在其上……

    网友NO.508736

    PyTorch的深度学习入门教程之构建神经网络

    前言 本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。 Part3:使用PyTorch构建一个神经网络 神经网络可以使用touch.nn来构建。nn依赖于autograd来定义模型,并且对其求导。一个nn.Module包含网络的层(layers),同时forward(input)可以返回output。 这是一个简单的前馈网络。它接受输入,然后一层一层向前传播,最后输出一个结果。 训练神经网络的典型步骤如下: (1) 定义神经网络,该网络包含一些可以学习的参数(如权重) (2) 在输入数据集上进行迭代 (3) 使用网络对输入数据进行处理 (4) 计算loss(输出值距离正确值有多远) (5) 将梯度反向传播到网络参数中 (6) 更新网络的权重,使用简单的更新法则:weight = weight - learning_rate* gradient,即:新的权重=旧的权重-学习率*梯度值。 1 定义网络 我们先定义一个网络: import torchfrom torch.autograd import Variableimport torch.nn as nnimport torch.nn.functional as Fclass Net(nn.Module): def __init__(self): super(Net, self).__init__() # 1 input image channel, 6 output channels, 5x5 square convolution # kernel self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) # an affine operation: y = Wx + b self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forwar……

    网友NO.611753

    TensorFlow深度学习之卷积神经网络CNN

    一、卷积神经网络的概述 卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在理论上具有对图像缩放、平移和旋转的不变性。 卷积神经网络CNN的要点就是局部连接(LocalConnection)、权值共享(Weights Sharing)和池化层(Pooling)中的降采样(Down-Sampling)。其中,局部连接和权值共享降低了参数量,使训练复杂度大大下降并减轻了过拟合。同时权值共享还赋予了卷积网络对平移的容忍性,池化层降采样则进一步降低了输出参数量并赋予模型对轻度形变的容忍性,提高了模型的泛化能力。可以把卷积层卷积操作理解为用少量参数在图像的多个位置上提取相似特征的过程。 卷积层的空间排列: 上文讲解了卷积层中每个神经元与输入数据体之间的连接方式,但是尚未讨论输出数据体中神经元的数量,……

    Copyright 2018-2020 xz577.com 码农之家

    电子书资源由网友、会员提供上传,本站记录提供者的基本信息及资源来路

    鸣谢: “ 码小辫 ” 公众号提供回调API服务、“ 脚本CDN ”提供网站加速(本站寻求更多赞助支持)

    版权投诉 / 书籍推广 / 赞助:520161757@qq.com

    上传资源(网友、会员均可提供)

    查看最新会员资料及资源信息