给大家带来的一篇关于Python数据分析相关的电子书资源,介绍了关于Python数据、Python数据分析方面的内容,本书是由人民邮电出版社出版,格式为PDF,资源大小11.3M,克林顿·布朗利编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:8.4。
Python数据分析基础电子书封面
适合数据分析新手,但需要掌握一定的python语法基础才可以。不然因为作者很粗心,文中有很多小bug。比如,明明说是python3编程,但书中很多代码print没加括号。。。另外,明明是讲解pandas的,但是里面涉及的新函数,语法讲解不清,或者根本就不给介绍。读者要么就得囫囵吞枣,要么就得一遍读,一遍查阅资料才可以。。不然真会把你搞晕。。 唯一的好处就是书中代码都是一遍基础python编,一遍pandas编,让你能明显体会到pandas的好处。这三星是给思路的。 但是作者的责任心真是“呵呵哒。”
可以作为python数据分析入门的第一本书,书中主要讲了csv和excel文件的导入处理,基础内容
想深入应用手中的数据?还是想在上千份文件上重复同样的分析过程?没有编程经验的非程序员们如何能在最短的时间内学会用当今炙手可热的Python语言进行数据分析?
来自Facebook的数据专家Clinton Brownley可以帮您解决上述问题。在他的这本书里,读者将能掌握基本Python编程方法,学会编写出处理电子表格和数据库中的数据的脚本,并了解使用Python模块来解析文件、分组数据和生成统计量的方法。学习基础语法,创建并运行自己的Python脚本,读取和解析CSV文件,读取多个Excel工作表和工作簿,执行数据库操作,搜索特定记录、分组数据和解析文本文件,建立统计图并绘图,生成描述性统计量并估计回归模型和分类模型,在Windows和Mac环境下按计划自动运行脚本。
第一章说实话对于零基础的人来说容易被吓到,成功的从入门到放弃,可以跳过第一章,书内容不错,但是并没有一种循序渐进的感觉。
“这本书对于那些使用数据的Python新手来说,是非常有用的学习资源。它的教学风格和附带的例子会帮助用户尽快熟悉Python语言、编程环境和Python生态系统中zui常用的几个软件包。” ——Wes McKinney,pandas库之父
想深入应用手中的数据?还是想在上千份文件上重复同样的分析过程?没有编程经验的非程序员们如何能在zui短的时间内学会用当今炙手可热的Python语言进行数据分析?
来自Facebook的数据专家Clinton Brownley可以帮您解决上述问题。在他的这本书里,读者将能掌握基本Python编程方法,学会编写出处理电子表格和数据库中的数据的脚本,并了解使用Python模块来解析文件、分组数据和生成统计量的方法。
- 学习基础语法,创建并运行自己的Python脚本
- 读取和解析CSV文件
- 读取多个Excel工作表和工作簿
- 执行数据库操作
- 搜索特定记录、分组数据和解析文本文件
- 建立统计图并绘图
- 生成描述性统计量并估计回归模型和分类模型
- 在Windows和Mac环境下按计划自动运行脚本
本书展示如何用Python程序将不同格式的数据处理和分析任务规模化和自动化。主要内容包括:Python基础知识介绍、CSV文件和Excel文件读写、数据库的操作、示例程序演示、图表的创建,等等。
很多关于Python 的图书和在线教程都展示了如何在Python shell 中运行代码。要以这种形式运行Python 代码,需要先打开一个命令行窗口(Windows 系统)或终端窗口(macOS 系统),输入“python”,按回车键之后会看见Python 提示符(就是>>>)。然后,只需一个一个地输入命令,Python 就会依次执行。
>>> 4 + 5 9 >>> print("I'm excited to learn Python.") I'm excited to learn Python.
这种运行代码的方法简捷有趣,但是当代码的行数不断增加时,就不太合适了。当你的任务需要多行代码才能完成时,一种更简便的方式是将所有的代码写在一个称为Python 脚本的文本文件中,然后运行这个脚本。下面就说明创建Python 脚本的方法。
1.1 创建Python脚本
要创建一个Python 脚本,需执行下列步骤。
(1) 打开Spyder IDE 或一个文本编辑器(例如:Windows 系统可以使用Notepad、Notepad++ 或Sublime Text;macOS 系统可以使用TextMate、TextWrangler 或Sublime Text)。
(2) 将下面两行代码写在文本文件中:
#!/usr/bin/env python3 print("Output #1: I'm excited to learn Python.")
第一行比较特殊,称为shebang 行,在Python 脚本中,你应该一直将它作为第一行。请注意行中的第一个字符是井号(#)。以# 开头的行为单行注释,所以安装了Windows 系统的计算机不读取也不执行这行代码。但是,安装了Unix 系统的计算机使用这一行来找到执行文件中代码的Python 版本。因为Windows 系统忽略这一行,像macOS 这样的基于Unix 的系统使用这一行,所以加入这一行可以使脚本在不同操作系统的计算机之间具有可移植性。
第二行是一个简单的打印语句。这一行会将双引号之间的文本打印在命令行窗口(Windows)或终端窗口(macOS)上。
(3) 打开Save As 对话框。
(4) 在location 栏中切换到桌面,使文件可以保存到桌面上。
(5) 在format 栏中,选择All Files,使对话框不自动选择文件类型。
(6) 在Save As 或File Name 栏中,输入“first_script.py”。以前,你可能会将这个文本文件保存为.txt 文件,但是在这个示例中,你应该把它保存为.py 文件,来创建一个Python 脚本。
(7) 点击Save。
Clinton W. Brownley博士,Facebook数据科学家,负责大数据流水线、统计建模和数据可视化项目,并为大型基础设施建设提供数据驱动的决策建议。
python数据分析用什么软件
Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性,这里就为大家分享几个不错的数据分析工具。 Python数据分析需要安装的第三方扩展库有:Numpy、Pandas、SciPy、Matplotlib、Scikit-Learn、Keras、Gensim、Scrapy等,以下是第三方扩展库的简要介绍:(推荐学习:Python视频教程) 1. Pandas Pandas是Python强大、灵活的数据分析和探索工具,包含Series、DataFrame等高级数据结构和工具,安装Pandas可使Python中处理数据非常快速和简单。 Pandas是Python的一个数据分析包,Pandas最初被用作金融数据分析工具而开发出来,因此Pandas为时间序列分析提供了……
PowerBI和Python关于数据分析的对比
前言 如果你对数据分析有一定的了解,那你一定听说过一些亲民好用的数据分析的工具,如Excel、Tableau、PowerBI等等等等,它们都是数据分析的得力助手。像经常使用这些根据的伙伴肯定也有苦恼的时候,不足之处也是显而易见:操作繁琐,复用性差,功能相对局限单一。 很多经常会用到数据分析的伙伴会问有没有一款便捷好用的工具!肯定有啊,Python的出现和普及,很容易就能改变这些窘境! 怎么解决呢?——Python Python有很多优点,如果你能很好的运用到工作中,会发现工作效率大大提升,涨薪也是再正常不过的事情。 Python优点一: “流程可控,工作高效” 举个例子,Excel做分析的过程:定位空……
以上就是本次介绍的Python数据分析电子书的全部相关内容,希望我们整理的资源能够帮助到大家,感谢大家对码农之家的支持。
上一篇:Java编程的逻辑
下一篇:Python机器学习经典实例
展开 +
收起 -
(1)创作者是有10多年数据统计分析与数字化经营工作经验的大数据专家,在世界各国公司都工作中过,阅历丰富。 (2)创作者擅于小结和创作,善于共享,编写数据统计分析类畅销书3部。
立即下载本书共19章,第1章介绍数据科学中涉及的基本领域;第2~3章介绍与数据工作紧密相关的Python语言基础;第4章讲解描述性统计分析在宏观业务领域的分析;
立即下载黄哲瀚
Copyright 2018-2020 www.xz577.com 码农之家
版权投诉 / 书籍推广 / 赞助:520161757@qq.com
各种和数据分析相关python库的介绍 1.Numpy: Numpy是python科学计算的基础包,它提供以下功能(不限于此): (1)快速高效的多维数组对象naarray (2)用于对数组执行元素级计算以及直接对数组执行数学运算的函数 (3)用于读写硬盘上基于数组的数据集的工具 (4)线性代数运算、傅里叶变换,以及随机数生成 (5)用于将C、C++、Fortran代码集成到python的工具 2.pandas pandas提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数。pandas兼具Numpy高性能的数组计算功能以及电子表格和关系型数据(如SQL)灵活的数据处理能力。它提供了复杂精细的索引功能,以便更为便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。 对于金融行业的用户,pandas提供了大量适用于金融数据的高性能时间序列功能和工具。 DataFrame是pandas的一个对象,它是一个面向列的二维表结构,且含有行标和列标。 ps.引用一段网上的话说明DataFrame的强大之处: Excel 2007及其以后的版本的最大行数是1048576,最大列数是16384,超过这个规模的数据Excel就会弹出个框框“此文本包含多行文本,无法放置在一个工作表中”。Pandas处理上千万的数据是易如反掌的事情,同时随后我们也将看到它比SQL有更强的表达能力,可以做很多复杂的操作,要写的code也更少。 说了一大堆它的好处,要实际感触还得动手码代码。 3.matplotlib matplotlib是最流行的用于绘制数据图表的python库。 4.Scipy Scipy是一组专门解决科学计算中各种标准问题域的包的集合。 5.statsmodels: 各种模型 ****待学习 6.scikit-learn: machine learning模块,很全 ****待学习
有许多优秀的Python书籍和在线课程,然而我不并不推荐它们中的一些,因为,有些是给大众准备的而不是给那些用来数据分析的人准备的。同样也有许多书是“用Python科学编程”的,但它们是面向各种数学为导向的主题的,而不是成为为了数据分析和统计。不要浪费浪费你的时间去阅读那些为大众准备的Python书籍。
在开始使用Python之前,我对用Python进行数据分析有一个误解:我必须不得不对Python编程特别精通。因此,我参加了Udacity的Python编程入门课程,完成了code academy上的Python教程,同时阅读了若干本Python编程书籍。就这样持续了3个月(平均每天3个小时),我那会儿通过完成小的软件项目来学习Python。敲代码是快乐的事儿,但是我的目标不是去成为一个Python开发人员,而是要使用Python数据分析。之后,我意识到,我花了很多时间来学习用Python进行软件开发,而不是数据分析。