当前位置:首页 > 人工智能 >
《深度学习之TensorFlow入门、原理与进阶实战》电子书封面

深度学习之TensorFlow入门、原理与进阶实战

  • 发布时间:2020年11月30日 09:51:01
  • 作者:李金洪
  • 大小:138 MB
  • 类别:深度学习电子书
  • 格式:PDF
  • 版本:超清版
  • 评分:8.2

    深度学习之TensorFlow入门、原理与进阶实战 PDF 超清版

      给大家带来的一篇关于深度学习相关的电子书资源,介绍了关于深度学习、TensorFlow方面的内容,本书是由机械工业出版社出版,格式为PDF,资源大小138 MB,李金洪编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:9.4分

      Tags:

      内容介绍

      深度学习之TensorFlow入门、原理与进阶实战》通过96个案例,全面讲解了深度学习神经网络原理和TensorFlow使用方法。全书共分为3篇,第1篇深度学习与TensorFlow基础,包括快速了解人工智能与TensorFlow、搭建开发环境、TensorFlow基本开发步骤、TensorFlow编程基础、识别图中模糊的手写数字等内容;第2篇深度学习基础——神经网络,介绍了神经网络的基础模型,包括单个神经元、多层神经网络、卷积神经网络、循环神经网络、自编码网络等内容;第3篇深度学习进阶,是对基础网络模型的灵活运用与自由组合,是对前面知识的综合及拔高,包括深度神经网络和对抗神经网络两章内容。本书特别适合TensorFlow深度学习的初学者和进阶读者阅读,也适合社会培训班和各大院校对深度学习有兴趣的学生阅读。

      目录

      • 配套学习资源
      • 前言
      • 第1篇 深度学习与TensorFlow基础
      • 第1章 快速了解人工智能与TensorFlow2
      • 1.1 什么是深度学习2
      • 1.2 TensorFlow是做什么的3
      • 1.3 TensorFlow的特点4
      • 1.4 其他深度学习框架特点及介绍5
      • 1.5 如何通过本书学好深度学习6
      • 1.5.1 深度学习怎么学6
      • 1.5.2 如何学习本书7
      • 第2章 搭建开发环境8
      • 2.1 下载及安装Anaconda开发工具8
      • 2.2 在Windows平台下载及安装TensorFlow11
      • 2.3 GPU版本的安装方法12
      • 2.3.1 安装CUDA软件包12
      • 2.3.2 安装cuDNN库13
      • 2.3.3 测试显卡14
      • 2.4 熟悉Anaconda 3开发工具15
      • 2.4.1 快速了解Spyder16
      • 2.4.2 快速了解Jupyter Notebook18
      • 第3章 TensorFlow基本开发步骤——以逻辑回归拟合二维数据为例19
      • 3.1 实例1:从一组看似混乱的数据中找出y≈2x的规律19
      • 3.1.1 准备数据20
      • 3.1.2 搭建模型21
      • 3.1.3 迭代训练模型23
      • 3.1.4 使用模型25
      • 3.2 模型是如何训练出来的25
      • 3.2.1 模型里的内容及意义25
      • 3.2.2 模型内部的数据流向26
      • 3.3 了解TensorFlow开发的基本步骤27
      • 3.3.1 定义输入节点的方法27
      • 3.3.2 实例2:通过字典类型定义输入节点28
      • 3.3.3 实例3:直接定义输入节点28
      • 3.3.4 定义“学习参数”的变量29
      • 3.3.5 实例4:通过字典类型定义“学习参数”29
      • 3.3.6 定义“运算”29
      • 3.3.7 优化函数,优化目标30
      • 3.3.8 初始化所有变量30
      • 3.3.9 迭代更新参数到最优解31
      • 3.3.10 测试模型31
      • 3.3.11 使用模型31
      • 第4章 TensorFlow编程基础32
      • 4.1 编程模型32
      • 4.1.1 了解模型的运行机制33
      • 4.1.2 实例5:编写hello world程序演示session的使用34
      • 4.1.3 实例6:演示with session的使用35
      • 4.1.4 实例7:演示注入机制35
      • 4.1.5 建立session的其他方法36
      • 4.1.6 实例8:使用注入机制获取节点36
      • 4.1.7 指定GPU运算37
      • 4.1.8 设置GPU使用资源37
      • 4.1.9 保存和载入模型的方法介绍38
      • 4.1.10 实例9:保存/载入线性回归模型38
      • 4.1.11 实例10:分析模型内容,演示模型的其他保存方法40
      • 4.1.12 检查点(Checkpoint)41
      • 4.1.13 实例11:为模型添加保存检查点41
      • 4.1.14 实例12:更简便地保存检查点44
      • 4.1.15 模型操作常用函数总结45
      • 4.1.16 TensorBoard可视化介绍45
      • 4.1.17 实例13:线性回归的TensorBoard可视化46
      • 4.2 TensorFlow基础类型定义及操作函数介绍48
      • 4.2.1 张量及操作49
      • 4.2.2 算术运算函数55
      • 4.2.3 矩阵相关的运算56
      • 4.2.4 复数操作函数58
      • 4.2.5 规约计算59
      • 4.2.6 分割60
      • 4.2.7 序列比较与索引提取61
      • 4.2.8 错误类62
      • 4.3 共享变量62
      • 4.3.1 共享变量用途62
      • 4.3.2 使用get-variable获取变量63
      • 4.3.3 实例14:演示get_variable和Variable的区别63
      • 4.3.4 实例15:在特定的作用域下获取变量65
      • 4.3.5 实例16:共享变量功能的实现66
      • 4.3.6 实例17:初始化共享变量的作用域67
      • 4.3.7 实例18:演示作用域与操作符的受限范围68
      • 4.4 实例19:图的基本操作70
      • 4.4.1 建立图70
      • 4.4.2 获取张量71
      • 4.4.3 获取节点操作72
      • 4.4.4 获取元素列表73
      • 4.4.5 获取对象73
      • 4.4.6 练习题74
      • 4.5 配置分布式TensorFlow74
      • 4.5.1 分布式TensorFlow的角色及原理74
      • 4.5.2 分布部署TensorFlow的具体方法75
      • 4.5.3 实例20:使用TensorFlow实现分布式部署训练75
      • 4.6 动态图(Eager)81
      • 4.7 数据集(tf.data)82
      • 第5章 识别图中模糊的手写数字(实例21)83
      • 5.1 导入图片数据集84
      • 5.1.1 MNIST数据集介绍84
      • 5.1.2 下载并安装MNIST数据集85
      • 5.2 分析图片的特点,定义变量87
      • 5.3 构建模型87
      • 5.3.1 定义学习参数87
      • 5.3.2 定义输出节点88
      • 5.3.3 定义反向传播的结构88
      • 5.4 训练模型并输出中间状态参数89
      • 5.5 测试模型90
      • 5.6 保存模型91
      • 5.7 读取模型92
      • 第2篇 深度学习基础——神经网络
      • 第6章 单个神经元96
      • 6.1 神经元的拟合原理96
      • 6.1.1 正向传播98
      • 6.1.2 反向传播98
      • 6.2 激活函数——加入非线性因素,解决线性模型缺陷99
      • 6.2.1 Sigmoid函数99
      • 6.2.2 Tanh函数100
      • 6.2.3 ReLU函数101
      • 6.2.4 Swish函数103
      • 6.2.5 激活函数总结103
      • 6.3 softmax算法——处理分类问题103
      • 6.3.1 什么是softmax104
      • 6.3.2 softmax原理104
      • 6.3.3 常用的分类函数105
      • 6.4 损失函数——用真实值与预测值的距离来指导模型的收敛方向105
      • 6.4.1 损失函数介绍105
      • 6.4.2 TensorFlow中常见的loss函数106
      • 6.5 softmax算法与损失函数的综合应用108
      • 6.5.1 实例22:交叉熵实验108
      • 6.5.2 实例23:one_hot实验109
      • 6.5.3 实例24:sparse交叉熵的使用110
      • 6.5.4 实例25:计算loss值110
      • 6.5.5 练习题111
      • 6.6 梯度下降——让模型逼近最小偏差111
      • 6.6.1 梯度下降的作用及分类111
      • 6.6.2 TensorFlow中的梯度下降函数112
      • 6.6.3 退化学习率——在训练的速度与精度之间找到平衡113
      • 6.6.4 实例26:退化学习率的用法举例114
      • 6.7 初始化学习参数115
      • 6.8 单个神经元的扩展——Maxout网络116
      • 6.8.1 Maxout介绍116
      • 6.8.2 实例27:用Maxout网络实现MNIST分类117
      • 6.9 练习题118
      • 第7章 多层神经网络——解决非线性问题119
      • 7.1 线性问题与非线性问题119
      • 7.1.1 实例28:用线性单分逻辑回归分析肿瘤是良性还是恶性的119
      • 7.1.2 实例29:用线性逻辑回归处理多分类问题123
      • 7.1.3 认识非线性问题129
      • 7.2 使用隐藏层解决非线性问题130
      • 7.2.1 实例30:使用带隐藏层的神经网络拟合异或操作130
      • 7.2.2 非线性网络的可视化及其意义133
      • 7.2.3 练习题135
      • 7.3 实例31:利用全连接网络将图片进行分类136
      • 7.4 全连接网络训练中的优化技巧137
      • 7.4.1 实例32:利用异或数据集演示过拟合问题138
      • 7.4.2 正则化143
      • 7.4.3 实例33:通过正则化改善过拟合情况144
      • 7.4.4 实例34:通过增大数据集改善过拟合145
      • 7.4.5 练习题146
      • 7.4.6 dropout——训练过程中,将部分神经单元暂时丢弃146
      • 7.4.7 实例35:为异或数据集模型添加dropout147
      • 7.4.8 实例36:基于退化学习率dropout技术来拟合异或数据集149
      • 7.4.9 全连接网络的深浅关系150
      • 7.5 练习题150
      • 第8章 卷积神经网络——解决参数太多问题151
      • 8.1 全连接网络的局限性151
      • 8.2 理解卷积神经网络152
      • 8.3 网络结构153
      • 8.3.1 网络结构描述153
      • 8.3.2 卷积操作155
      • 8.3.3 池化层157
      • 8.4 卷积神经网络的相关函数158
      • 8.4.1 卷积函数tf.nn.conv2d158
      • 8.4.2 padding规则介绍159
      • 8.4.3 实例37:卷积函数的使用160
      • 8.4.4 实例38:使用卷积提取图片的轮廓165
      • 8.4.5 池化函数tf.nn.max_pool(avg_pool)167
      • 8.4.6 实例39:池化函数的使用167
      • 8.5 使用卷积神经网络对图片分类170
      • 8.5.1 CIFAR介绍171
      • 8.5.2 下载CIFAR数据172
      • 8.5.3 实例40:导入并显示CIFAR数据集173
      • 8.5.4 实例41:显示CIFAR数据集的原始图片174
      • 8.5.5 cifar10_input的其他功能176
      • 8.5.6 在TensorFlow中使用queue176
      • 8.5.7 实例42:协调器的用法演示178
      • 8.5.8 实例43:为session中的队列加上协调器179
      • 8.5.9 实例44:建立一个带有全局平均池化层的卷积神经网络180
      • 8.5.10 练习题183
      • 8.6 反卷积神经网络183
      • 8.6.1 反卷积神经网络的应用场景184
      • 8.6.2 反卷积原理184
      • 8.6.3 实例45:演示反卷积的操作185
      • 8.6.4 反池化原理188
      • 8.6.5 实例46:演示反池化的操作189
      • 8.6.6 实例47:演示gradients基本用法192
      • 8.6.7 实例48:使用gradients对多个式子求多变量偏导192
      • 8.6.8 实例49:演示梯度停止的实现193
      • 8.7 实例50:用反卷积技术复原卷积网络各层图像195
      • 8.8 善用函数封装库198
      • 8.8.1 实例51:使用函数封装库重写CIFAR卷积网络198
      • 8.8.2 练习题201
      • 8.9 深度学习的模型训练技巧201
      • 8.9.1 实例52:优化卷积核技术的演示201
      • 8.9.2 实例53:多通道卷积技术的演示202
      • 8.9.3 批量归一化204
      • 8.9.4 实例54:为CIFAR图片分类模型添加BN207
      • 8.9.5 练习题209
      • 第9章 循环神经网络——具有记忆功能的网络210
      • 9.1 了解RNN的工作原理210
      • 9.1.1 了解人的记忆原理210
      • 9.1.2 RNN网络的应用领域212
      • 9.1.3 正向传播过程212
      • 9.1.4 随时间反向传播213
      • 9.2 简单RNN215
      • 9.2.1 实例55:简单循环神经网络实现——裸写一个退位减法器215
      • 9.2.2 实例56:使用RNN网络拟合回声信号序列220
      • 9.3 循环神经网络(RNN)的改进225
      • 9.3.1 LSTM网络介绍225
      • 9.3.2 窥视孔连接(Peephole)228
      • 9.3.3 带有映射输出的STMP230
      • 9.3.4 基于梯度剪辑的cell230
      • 9.3.5 GRU网络介绍230
      • 9.3.6 Bi-RNN网络介绍231
      • 9.3.7 基于神经网络的时序类分类CTC232
      • 9.4 TensorFlow实战RNN233
      • 9.4.1 TensorFlow中的cell类233
      • 9.4.2 通过cell类构建RNN234
      • 9.4.3 实例57:构建单层LSTM网络对MNIST数据集分类239
      • 9.4.4 实例58:构建单层GRU网络对MNIST数据集分类240
      • 9.4.5 实例59:创建动态单层RNN网络对MNIST数据集分类240
      • 9.4.6 实例60:静态多层LSTM对MNIST数据集分类241
      • 9.4.7 实例61:静态多层RNN-LSTM连接GRU对MNIST数据集分类242
      • 9.4.8 实例62:动态多层RNN对MNIST数据集分类242
      • 9.4.9 练习题243
      • 9.4.10 实例63:构建单层动态双向RNN对MNIST数据集分类243
      • 9.4.11 实例64:构建单层静态双向RNN对MNIST数据集分类244
      • 9.4.12 实例65:构建多层双向RNN对MNIST数据集分类246
      • 9.4.13 实例66:构建动态多层双向RNN对MNIST数据集分类247
      • 9.4.14 初始化RNN247
      • 9.4.15 优化RNN248
      • 9.4.16 实例67:在GRUCell中实现LN249
      • 9.4.17 CTC网络的loss——ctc_loss251
      • 9.4.18 CTCdecoder254
      • 9.5 实例68:利用BiRNN实现语音识别255
      • 9.5.1 语音识别背景255
      • 9.5.2 获取并整理样本256
      • 9.5.3 训练模型265
      • 9.5.4 练习题272
      • 9.6 实例69:利用RNN训练语言模型273
      • 9.6.1 准备样本273
      • 9.6.2 构建模型275
      • 9.7 语言模型的系统学习279
      • 9.7.1 统计语言模型279
      • 9.7.2 词向量279
      • 9.7.3 word2vec281
      • 9.7.4 实例70:用CBOW模型训练自己的word2vec283
      • 9.7.5 实例71:使用指定侯选采样本训练word2vec293
      • 9.7.6 练习题296
      • 9.8 处理
         

      以上就是本次介绍的深度学习电子书的全部相关内容,希望我们整理的资源能够帮助到大家,感谢大家对码农之家的支持。

      上一篇:Android应用案例开发大全

      下一篇:迅维讲义大揭秘:液晶显示器维修不是事儿

      展开 +

      收起 -

      下载地址:百度网盘下载
      深度学习 相关电子书
      21个项目玩转深度学习
      21个项目玩转深度学习 PDF 超清版

      以实践为导向,深入介绍了深度学习技术和TensorFlow框架编程内容,包含图像识别、人脸识别、编写风格迁移应用、使用神经网络生成图像和文本、训练机器玩游戏等,使学习深度学习和TensorF

      立即下载
      深度学习与R语言
      深度学习与R语言 PDF 全书影印版

      假如您是大学老师,你就赶紧添加深度神经网络队伍,变成计算机科学技术专业领头人。 假如您是公司IT技术工程师,这就是你技术性转型发展的优良最佳时机,快速步入互联网时代。 假如您

      立即下载
      深度学习利器:TensorFlow程序设计
      深度学习利器:TensorFlow程序设计 PDF 完整版

      在工业界,TensorFlow 比其他框架更具有优势。TensorFlow 支持异构设备的分布式计算,使得上千万、上亿数据量的模型能够有效地利用机器资源进行训练。TensorFlow 支持卷积神经网络、循环神经网

      立即下载
      深度学习之PyTorch实战计算机视觉
      深度学习之PyTorch实战计算机视觉 PDF 高清影印版

      计算机视觉、自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向,本书旨在帮助零基础或基础较为薄弱的读者入门深度学习,达到能够独立使用深度学习知识处理计算机视觉问

      立即下载
      PyTorch深度学习实战
      PyTorch深度学习实战 PDF 超清完整版

      这本书从原理到实战、深入浅出地介绍了Facebook人工智能利器Pytorch的卓越表现,主要定位为具有一定Python编程基础,对机器学习和神经网络有一定了解的程序员们

      立即下载
      读者心得
      101小时59分钟前回答

      浅谈Tensorflow由于版本问题出现的几种错误及解决方法

      1、AttributeError: 'module' object has no attribute 'rnn_cell' S:将tf.nn.rnn_cell替换为tf.contrib.rnn 2、TypeError: Expected int32, got list containing Tensors of type '_Message' instead. S:由于tf.concat的问题,将tf.concat(1, [conv1, conv2]) 的格式替换为tf.concat( [conv1, conv2],1) 3、AttributeError: 'module' object has no attribute 'pack' S:将pack替换为stack 4、ValueError: Only call `softmax_cross_entropy_with_logits` with named arguments (labels=..., logits=..., ...) S:按照提示,需要将括号内的形参写出,即(logits=pre, lables=tru)而非(pre,tru) 5、ValueError: Variable Wemb/Adam/ does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope? S:需要定义scope,虽然报错可能是在optimizer处……

      43小时22分钟前回答

      对tensorflow 的模型保存和调用实例讲解

      我们通常采用tensorflow来训练,训练完之后应当保存模型,即保存模型的记忆(权重和偏置),这样就可以来进行人脸识别或语音识别了。 1.模型的保存 # 声明两个变量v1 = tf.Variable(tf.random_normal([1, 2]), name="v1")v2 = tf.Variable(tf.random_normal([2, 3]), name="v2")init_op = tf.global_variables_initializer() # 初始化全部变量saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型with tf.Session() as sess: sess.run(init_op) print("v1:", sess.run(v1)) # 打印v1、v2的值一会读取之后对比 print("v2:", sess.run(v2)) #定义保存路径,一定要是绝对路径,且用‘/ '分隔父目录与子目录 saver_path = saver.save(sess, "C:/Users/Administrator/Desktop/tt/model.ckpt") # 将模型保存到save/mode……

      码农之家

      傅瑶岑 提供上传

      资源
      35
      粉丝
      22
      喜欢
      172
      评论
      20

      Copyright 2018-2021 www.xz577.com 码农之家

      版权投诉 / 书籍推广:520161757@qq.com