当前位置:首页 > 编程教程 > Python技术文章 > Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5中NumPy模块的使用图文教程

  • 发布时间:
  • 作者:码农之家
  • 点击:130

这篇文章主要知识点是关于Python3.5、NumPy模块、的内容,如果大家想对相关知识点有系统深入的学习,可以参阅以下电子书

Python即学即用
  • 类型:Python编程大小:99 MB格式:PDF作者:张燕妮
立即下载

Python3.5基础之NumPy模块的使用图文与实例详解

本文实例讲述了Python3.5基础之NumPy模块的使用。分享给大家供大家参考,具体如下:

1、简介

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

2、多维数组——ndarray

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

 

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

 

#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:ZhengzhengLiu

import numpy as np

#1.创建ndarray
#创建一维数组
n1 = np.array([1,2,3,4])
print(n1)

#属性--ndim:维度;dtype:元素类型;shape:数组形状;
# size:数组元素总个数,shape值相乘得到
print("n1维度:",n1.ndim)
print("n1元素类型:",n1.dtype)
print("n1数组形状:",n1.shape)
print("n1数组元素总个数:",n1.size)

#创建二维数组
n2 = np.array([
  [1,2,3,4],
  [5,6,7,8]
])

print(n2)
print("n2维度:",n2.ndim)
print("n2元素类型:",n2.dtype)

#创建三维数组
n3 = np.array([
  [
    [1,2,3,4],
    [5,6,7,8]
  ],
  [
    [10,20,30,40],
    [50,60,70,80]
  ]
])

print(n3)
print("n3数组形状:",n3.shape)
print("n3数组元素总个数:",n3.size)

#2.通过函数创建数组
z = np.zeros((3,2))   #创建指定形状的数组,数值由零填充
print(z)
print(z.dtype)

o = np.ones((2,4))   #创建指定形状的数组,数值由1填充
print(o)

e = np.empty((2,3,2))  #创建指定形状的数组,数值由未初始化的垃圾值填充
print(e)

#3.通过函数计算的方式去创建数组
#一个参数,区间左闭右开,默认起始值为0,步长为1
np1 = np.arange(10)
print(np1)

#两个参数(起始值,终止值),区间左闭右开,默认步长为1
np2 = np.arange(2,10)
print(np2)

#三个参数(起始值,终止值,步长),区间左闭右开,步长为2
np3 = np.arange(2,10,2)
print(np3)

#倒序创建数组元素
np4 = np.arange(10,2,-1)
print(np4)

#全闭区间,参数(起始值,终止值,元素个数),等差数列
np5 = np.linspace(0,10,5)
print(np5)

#全闭区间,以10为底数参数为指数(起始值,终止值,元素个数),等比数列
np6 = np.logspace(0,2,5)
print(np6)

#生成随机数的数组
np7 = np.random.random((2,3))
print(np7)
 

运行结果:

[1 2 3 4]
n1维度: 1
n1元素类型: int32
n1数组形状: (4,)
n1数组元素总个数: 4
[[1 2 3 4]
 [5 6 7 8]]
n2维度: 2
n2元素类型: int32
[[[ 1  2  3  4]
  [ 5  6  7  8]]

 [[10 20 30 40]
  [50 60 70 80]]]
n3数组形状: (2, 2, 4)
n3数组元素总个数: 16
[[ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]]
float64
[[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]
[[[  1.02548961e-305   5.40165714e-067]
  [  1.05952696e-153   9.69380992e+141]
  [  2.17151199e+214   4.34975848e-114]]

 [[  2.08064175e-115   1.91431714e+227]
  [  6.42897811e-109   1.26088822e+232]
  [  9.51634286e-114   5.45764552e-306]]]
[0 1 2 3 4 5 6 7 8 9]
[2 3 4 5 6 7 8 9]
[2 4 6 8]
[10  9  8  7  6  5  4  3]
[  0.    2.5   5.    7.5  10. ]
[   1.            3.16227766   10.           31.6227766   100.        ]
[[ 0.55980469  0.99477652  0.82310732]
 [ 0.97239333  0.1409895   0.57213264]]

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

#修改ndarray形状
np8 = np.arange(0,20,2)
print(np8)
print(np8.size)

np9 = np8.reshape(2,5)
print(np9)
print(np9.size)

#reshape函数是对被修改数组的一个拷贝,共享同一内存,
# 修改其中一个数组会影响里一个
np9[1][2] = 50
print(np8)
print(np9)

# -1表示第二维自动根据元素个数计算
np10 = np8.reshape(5,-1)
print(np10)

#shape直接修改原来数组的形状
np8.shape=(2,-1)
print(np8)

运行结果:

[ 0  2  4  6  8 10 12 14 16 18]
10
[[ 0  2  4  6  8]
 [10 12 14 16 18]]
10
[ 0  2  4  6  8 10 12 50 16 18]
[[ 0  2  4  6  8]
 [10 12 50 16 18]]
[[ 0  2]
 [ 4  6]
 [ 8 10]
 [12 50]
 [16 18]]
[[ 0  2  4  6  8]
 [10 12 50 16 18]]

Numpy基本操作说明

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解

Python3.5基础之NumPy模块的使用图文与实例详解Python3.5基础之NumPy模块的使用图文与实例详解

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

以上就是本次给大家分享的关于java的全部知识点内容总结,大家还可以在下方相关文章里找到相关文章进一步学习,感谢大家的阅读和支持。

Python 相关电子书
学习笔记
网友NO.756462

对numpy的array和python中自带的list之间相互转化详解

a=([3.234,34,3.777,6.33]) a为python的list类型 将a转化为numpy的array: np.array(a)array([ 3.234, 34. , 3.777, 6.33 ]) 将a转化为python的list a.tolist() 以上这篇对numpy的array和python中自带的list之间相互转化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持码农之家。 ……

网友NO.523261

python实现list由于numpy array的转换

实例如下所示: u = array([[1,2],[3,4]])m = u.tolist()#转换为listm.remove(m[0])#移除m[0]m = np.array(m)#转换为arra 以上这篇python实现list由于numpy array的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持码农之家。 ……

网友NO.124960

Python中Numpy mat的使用详解

前面介绍过用dnarray来模拟,但mat更符合矩阵,这里的mat与Matlab中的很相似。(mat与matrix等同) 基本操作 m= np.mat([1,2,3]) #创建矩阵 mmatrix([[1, 2, 3]]) m[0] #取一行matrix([[1, 2, 3]]) m[0,1] #第一行,第2个数据2 m[0][1] #注意不能像数组那样取值了Traceback (most recent call last): File "stdin", line 1, in module File "/usr/lib64/python2.7/site-packages/numpy/matrixlib/defmatrix.py", line 305, in __getitem__ out = N.ndarray.__getitem__(self, index)IndexError: index 1 is out of bounds for axis 0 with size 1#将Python的列表转换成NumPy的矩阵 list=[1,2,3] mat(list)matrix([[1, 2, 3]])#Numpy dnarray转换成Numpy矩阵 n = np.array([1,2,3]) narray([1, 2, 3]) np.mat(n)matrix([[1, 2, 3]])#排序 m=np.mat([[2,5,1],[4,6,2]]) #创建2行3列矩阵 mmatrix([[2, 5, 1], [4, 6, 2]]) m.sort() #对每一行进行排序 mmatrix([[1, 2, 5], [2, 4, 6]]) m.shape #获得矩阵的行列数(2, 3) m.shape[0] #获得矩阵的行数2 m.shape[1] #获得……

网友NO.252020

python学习教程之Numpy和Pandas的使用

前言 本文主要给大家介绍了关于python中Numpy和Pandas使用的相关资料,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。 它们是什么? NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。 Pandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。 List、Numpy与Pandas Numpy与List 相同之处: 都可以用下标访问元素,例如a[0] 都可以切片访问,例如a[1:3] 都可以使用for循环进行遍历 不同之处: Numpy之中每个元素类型必须相同;而List中可以混合多个类型元素 Numpy使用更方便,封装了许多函数,例如mean、std、sum、……

<
1
>

Copyright 2018-2020 www.xz577.com 码农之家

版权投诉 / 书籍推广 / 赞助:520161757@qq.com