Python Matplotlib绘制多子图详解
- 更新时间:2022-09-07 08:45:23
- 编辑:武德海
通过获取子图的label和线型来合并图例
注意添加label
#导入数据(读者可忽略) pre_lp=total_res#组合模型 true=diff1[-pre_day:]#真实值 pre_ph=results_data["yhat"]#prophet pre_lstm=reslut#lstm pre_ari=data_ari['data_pre']#arima #设置中文字体 rcParams['font.sans-serif'] = 'kaiti' # 生成一个时间序列 (读者可根据情况进行修改或删除) time =pd.to_datetime(np.arange(0,21), unit='D', origin=pd.Timestamp('2021-10-19')) #创建画布 fig=plt.figure(figsize=(20,16))#figsize为画布大小 # 1 ax1=fig.add_subplot(221) ax1.plot(time,pre_lp,color='#1bb9f6',marker='^',linestyle='-',label='1') # ax1.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax1.set_title('1',fontsize=15)#设置标题 ax1.set_xlabel('日期/天',fontsize=15)#设置横坐标名称 ax1.set_ylabel('感染人数/人',fontsize=15)#设置纵坐标名称 ax1.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))#设置横坐标刻度(读者可忽略) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)#设置横坐标刻度(读者可忽略) # 2 ax2=fig.add_subplot(222) ax2.plot(time,pre_ph,color='#739b06',marker='o',linestyle='-',label='2') # ax2.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax2.set_title('2',fontsize=15) ax2.set_xlabel('日期/天',fontsize=15) ax2.set_ylabel('感染人数/人',fontsize=15) ax2.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) # 3 ax3=fig.add_subplot(223) ax3.plot(time,pre_lstm,color='#38d9a9',marker='*',linestyle='-',label='3') # ax3.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax3.set_title('3',fontsize=15) ax3.set_xlabel('日期/天',fontsize=15) ax3.set_ylabel('感染人数/人',fontsize=15) ax3.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) # 4 ax4=fig.add_subplot(224) ax4.plot(time,pre_ari,color='#e666ff',marker='x',linestyle='-',label='4') ax4.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax4.set_title('4',fontsize=15) ax4.set_xlabel('日期/天',fontsize=15) ax4.set_ylabel('感染人数/人',fontsize=15) ax4.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) #初始化labels和线型数组 lines=[] labels=[] #通过循环获取线型和labels for ax in fig.axes: axLine, axLabel = ax.get_legend_handles_labels() lines.extend(axLine) labels.extend(axLabel) #设置图例和调整图例位置 fig.legend(lines, labels,loc='lower center', ncol=5,framealpha=False,fontsize=25)
结果如下图
这个时候我们再把原先代码里面的通过循环获取label和线型注释掉,代码如下
#导入数据(读者可忽略) pre_lp=total_res#组合模型 true=diff1[-pre_day:]#真实值 pre_ph=results_data["yhat"]#prophet pre_lstm=reslut#lstm pre_ari=data_ari['data_pre']#arima #设置中文字体 rcParams['font.sans-serif'] = 'kaiti' # 生成一个时间序列 (读者可根据情况进行修改或删除) time =pd.to_datetime(np.arange(0,21), unit='D', origin=pd.Timestamp('2021-10-19')) #创建画布 fig=plt.figure(figsize=(20,16))#figsize为画布大小 # 1 ax1=fig.add_subplot(221) ax1.plot(time,pre_lp,color='#1bb9f6',marker='^',linestyle='-',label='1') ax1.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax1.set_title('1',fontsize=15)#设置标题 ax1.set_xlabel('日期/天',fontsize=15)#设置横坐标名称 ax1.set_ylabel('感染人数/人',fontsize=15)#设置纵坐标名称 ax1.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d'))#设置横坐标刻度(读者可忽略) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45)#设置横坐标刻度(读者可忽略) # 2 ax2=fig.add_subplot(222) ax2.plot(time,pre_ph,color='#739b06',marker='o',linestyle='-',label='2') ax2.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax2.set_title('2',fontsize=15) ax2.set_xlabel('日期/天',fontsize=15) ax2.set_ylabel('感染人数/人',fontsize=15) ax2.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) # 3 ax3=fig.add_subplot(223) ax3.plot(time,pre_lstm,color='#38d9a9',marker='*',linestyle='-',label='3') ax3.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax3.set_title('3',fontsize=15) ax3.set_xlabel('日期/天',fontsize=15) ax3.set_ylabel('感染人数/人',fontsize=15) ax3.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) # 4 ax4=fig.add_subplot(224) ax4.plot(time,pre_ari,color='#e666ff',marker='x',linestyle='-',label='4') ax4.plot(time,true,color='#fd5749',marker='s',linestyle='-',label='true') ax4.set_title('4',fontsize=15) ax4.set_xlabel('日期/天',fontsize=15) ax4.set_ylabel('感染人数/人',fontsize=15) ax4.xaxis.set_major_formatter(mdate.DateFormatter('%m-%d')) plt.xticks(pd.date_range(time[0],time[-1],freq='D'),rotation=45) #初始化labels和线型数组 # lines=[] # labels=[] #通过循环获取线型和labels # for ax in fig.axes: # axLine, axLabel = ax.get_legend_handles_labels() # lines.extend(axLine) # labels.extend(axLabel) #设置图例和调整图例位置 fig.legend(lines, labels,loc='lower center', ncol=5,framealpha=False,fontsize=25)
结果如下图
调整子图间距
plt.subplots_adjust(wspace=0.4,hspace=0.4)
wspace为子图之间宽间距,hspace为子图之间高间距
对比图如下
设置了间距的图像
没有设置间距的图像
到此这篇关于Python Matplotlib绘制多子图详解的文章就介绍到这了,更多相关Python Matplotlib多子图内容请搜索码农之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持码农之家!
相关教程
-
python把京东订单推送到测试环境,提供便利操作步骤
这篇文章主要介绍了python实现京东订单推送到测试环境,提供便利操作,涉及Python基于requests模块的网络请求操作相关使用技巧,需要的朋友可以参考下
发布时间:2020-02-14
-
python文件读写的缓冲行为分析
今天小编就为大家分享一篇对python文件读写的缓冲行为详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
发布时间:2020-03-26
-
实例详解Python实现数据结构线性链表(单链表)算法
这篇文章主要介绍了Python实现数据结构线性链表(单链表)算法,结合实例形式分析了Python单链表的定义、节点插入、删除、打印等相关操作技巧,需要的朋友可以参考下
发布时间:2020-01-27
-
Python将字符串转换为datetime的方法
在Python中对于时间和字符串之间的转换很常见,time、datetime和string之间的相互转换可以通过datatime、time库进行实现,这里有案例的具体实现,但是转换过程中需要注意时间的格式。
发布时间:2021-05-02
-
Python如何实现定制自动化业务流量报表周报功能
这篇文章主要介绍了Python实现定制自动化业务流量报表周报功能,结合实例形式分析了Python基于XlsxWriter模块操作xlsx文件生成报表图的相关操作技巧,需要的朋友可以参考下
发布时间:2020-06-17
-
Python快速查找list中相同部分的实例代码
今天小编就为大家分享一篇Python快速查找list中相同部分的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
发布时间:2019-08-16
-
Python grpc超时机制代码示例
这篇文章主要介绍了Python grpc超时机制代码示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
发布时间:2021-04-08
-
如何使用python实现支付宝转账接口
这篇文章主要为大家详细介绍了python实现支付宝转账接口,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
发布时间:2020-02-10