Pandas中resample方法示例代码
- 更新时间:2020-03-21 10:11:21
- 编辑:耿英耀
Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。
方法的格式是:
DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start',kind=None, loffset=None, limit=None, base=0)
参数详解是:
参数 | 说明 |
---|---|
freq | 表示重采样频率,例如‘M'、‘5min',Second(15) |
how='mean' | 用于产生聚合值的函数名或数组函数,例如‘mean'、‘ohlc'、np.max等,默认是‘mean',其他常用的值由:‘first'、‘last'、‘median'、‘max'、‘min' |
axis=0 | 默认是纵轴,横轴设置axis=1 |
fill_method = None | 升采样时如何插值,比如‘ffill'、‘bfill'等 |
closed = ‘right' | 在降采样时,各时间段的哪一段是闭合的,‘right'或‘left',默认‘right' |
label= ‘right' | 在降采样时,如何设置聚合值的标签,例如,9:30-9:35会被标记成9:30还是9:35,默认9:35 |
loffset = None | 面元标签的时间校正值,比如‘-1s'或Second(-1)用于将聚合标签调早1秒 |
limit=None | 在向前或向后填充时,允许填充的最大时期数 |
kind = None | 聚合到时期(‘period')或时间戳(‘timestamp'),默认聚合到时间序列的索引类型 |
convention = None | 当重采样时期时,将低频率转换到高频率所采用的约定(start或end)。默认‘end' |
首先创建一个Series,采样频率为一分钟。
>>> index = pd.date_range('1/1/2000', periods=9, freq='T') >>> series = pd.Series(range(9), index=index) >>> series 2000-01-01 00:00:00 0 2000-01-01 00:01:00 1 2000-01-01 00:02:00 2 2000-01-01 00:03:00 3 2000-01-01 00:04:00 4 2000-01-01 00:05:00 5 2000-01-01 00:06:00 6 2000-01-01 00:07:00 7 2000-01-01 00:08:00 8 Freq: T, dtype: int64
降低采样频率为三分钟
>>> series.resample('3T').sum() 2000-01-01 00:00:00 3 2000-01-01 00:03:00 12 2000-01-01 00:06:00 21 Freq: 3T, dtype: int64
降低采样频率为三分钟,但是每个标签使用right来代替left。请注意,bucket中值的用作标签。
>>> series.resample('3T', label='right').sum() 2000-01-01 00:03:00 3 2000-01-01 00:06:00 12 2000-01-01 00:09:00 21 Freq: 3T, dtype: int64
降低采样频率为三分钟,但是关闭right区间。
>>> series.resample('3T', label='right', closed='right').sum() 2000-01-01 00:00:00 0 2000-01-01 00:03:00 6 2000-01-01 00:06:00 15 2000-01-01 00:09:00 15 Freq: 3T, dtype: int64
增加采样频率到30秒
>>> series.resample('30S').asfreq()[0:5] #select first 5 rows 2000-01-01 00:00:00 0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 1 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2 Freq: 30S, dtype: float64
增加采样频率到30S,使用pad方法填充nan值。
>>> series.resample('30S').pad()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 0 2000-01-01 00:01:00 1 2000-01-01 00:01:30 1 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64
增加采样频率到30S,使用bfill方法填充nan值。
>>> series.resample('30S').bfill()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 1 2000-01-01 00:01:00 1 2000-01-01 00:01:30 2 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64
通过apply运行一个自定义函数
>>> def custom_resampler(array_like): ... return np.sum(array_like)+5 >>> series.resample('3T').apply(custom_resampler) 2000-01-01 00:00:00 8 2000-01-01 00:03:00 17 2000-01-01 00:06:00 26 Freq: 3T, dtype: int64
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持码农之家。
相关教程
-
Python3.5 Pandas模块中Series用法详解
这篇文章主要介绍了Python3.5 Pandas模块之Series用法,结合实例形式分析了Python3.5中Pandas模块的Series结构原理、创建、获取、运算等相关操作技巧与注意事项,需要的朋友可以参考下
发布时间:2019-06-15
-
Pandas数据形状df.shape的实现
本文主要介绍了Pandas数据形状df.shape的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
发布时间:2019-07-23
-
Python机器学习:预测分析核心算法
在学习和研究机器学习的时候,面临令人眼花缭乱的算法,机器学习新手往往会不知所措。本书从算法和Python语言实现的角度,帮助读者认识机器学习。 本书专注于两类核心的算法族,即惩罚
大小:22.4 MBPython机器学习电子书
-
Python带我起飞:入门、进阶、商业实战
“教学视频+ 图书+ QQ群交流、答疑”三维学习方案,让Python学习更轻松。赠送教学视频47段,共计429分钟。全书共计42个实例。15位技术专家联合推荐!
大小:185 MBPython编程电子书
-
Python机器学习基础教程
这是一本机器学习入门书,以Python语言介绍,包含机器学习的基本概念及其应用;实践中最常用的机器学习算法以及这些算法的优缺点;待处理数据的呈现方式的重要性等内容
大小:28.3 MBPython电子书
-
Python编程无师自通
Python编程无师自通 专业程序员的养成 零基础自学Python3入门教程 Python基础教程
大小:122.4 MBPython编程电子书
-
Python程序设计开发宝典
本书深入剖析Python 3.5.x、Python 3.6.x及更新版本的内置对象和标准库对象高级用法,150个案例源代码和超过1000个演示性代码片段,可以作为Python程序设计教材
大小:42.8 MBPython开发电子书
-
Python可以这样学
《Python可以这样学》对Python内部工作原理进行了一定深度的剖析,案例代码使用Python 3.5.1实现和Python 3.6.0,适当介绍了Python代码优化、系统编程和安全编程的有关知识,满足不同层次读者的需要,适合作为Python程序员的开发指南。
大小:22 MBPython入门电子书
-
Python并行编程参考手册
本书以Python为基础,对并行编程领域的各项技术与知识进行了广泛且深入的讲解,从原理到实践系统化地对并行编程技术进行了层层剖析,是提升并行编程技能的一本不可多得的好书,欢迎下载
大小:41.4 MBPython编程电子书