当前位置:首页 > 编程教程 > Python技术文章 > Pandas中resample方法详解

Pandas中resample方法示例代码

  • 发布时间:
  • 作者:码农之家
  • 点击:194

这篇文章主要知识点是关于Pandas、resample方法、的内容,如果大家想对相关知识点有系统深入的学习,可以参阅以下电子书

卷积神经网络的Python实现
  • 类型:卷积神经网络大小:113.8 MB格式:PDF作者:单建华
立即下载

Pandas中resample方法详解

Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。

方法的格式是:

DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start',kind=None, loffset=None, limit=None, base=0)

参数详解是:

 

参数 说明
freq 表示重采样频率,例如‘M'、‘5min',Second(15)
how='mean' 用于产生聚合值的函数名或数组函数,例如‘mean'、‘ohlc'、np.max等,默认是‘mean',其他常用的值由:‘first'、‘last'、‘median'、‘max'、‘min'
axis=0 默认是纵轴,横轴设置axis=1
fill_method = None 升采样时如何插值,比如‘ffill'、‘bfill'等
closed = ‘right' 在降采样时,各时间段的哪一段是闭合的,‘right'或‘left',默认‘right'
label= ‘right' 在降采样时,如何设置聚合值的标签,例如,9:30-9:35会被标记成9:30还是9:35,默认9:35
loffset = None 面元标签的时间校正值,比如‘-1s'或Second(-1)用于将聚合标签调早1秒
limit=None 在向前或向后填充时,允许填充的最大时期数
kind = None 聚合到时期(‘period')或时间戳(‘timestamp'),默认聚合到时间序列的索引类型
convention = None 当重采样时期时,将低频率转换到高频率所采用的约定(start或end)。默认‘end'

 

首先创建一个Series,采样频率为一分钟。

>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00  0
2000-01-01 00:01:00  1
2000-01-01 00:02:00  2
2000-01-01 00:03:00  3
2000-01-01 00:04:00  4
2000-01-01 00:05:00  5
2000-01-01 00:06:00  6
2000-01-01 00:07:00  7
2000-01-01 00:08:00  8
Freq: T, dtype: int64

降低采样频率为三分钟

>>> series.resample('3T').sum()
2000-01-01 00:00:00   3
2000-01-01 00:03:00  12
2000-01-01 00:06:00  21
Freq: 3T, dtype: int64

降低采样频率为三分钟,但是每个标签使用right来代替left。请注意,bucket中值的用作标签。

>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00   3
2000-01-01 00:06:00  12
2000-01-01 00:09:00  21
Freq: 3T, dtype: int64

降低采样频率为三分钟,但是关闭right区间。

>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00   0
2000-01-01 00:03:00   6
2000-01-01 00:06:00  15
2000-01-01 00:09:00  15
Freq: 3T, dtype: int64

增加采样频率到30秒

>>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00   0
2000-01-01 00:00:30  NaN
2000-01-01 00:01:00   1
2000-01-01 00:01:30  NaN
2000-01-01 00:02:00   2
Freq: 30S, dtype: float64

增加采样频率到30S,使用pad方法填充nan值。

>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00  0
2000-01-01 00:00:30  0
2000-01-01 00:01:00  1
2000-01-01 00:01:30  1
2000-01-01 00:02:00  2
Freq: 30S, dtype: int64

增加采样频率到30S,使用bfill方法填充nan值。

>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00  0
2000-01-01 00:00:30  1
2000-01-01 00:01:00  1
2000-01-01 00:01:30  2
2000-01-01 00:02:00  2
Freq: 30S, dtype: int64

通过apply运行一个自定义函数

>>> def custom_resampler(array_like):
...   return np.sum(array_like)+5
>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00   8
2000-01-01 00:03:00  17
2000-01-01 00:06:00  26
Freq: 3T, dtype: int64

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持码农之家。

以上就是本次给大家分享的关于java的全部知识点内容总结,大家还可以在下方相关文章里找到相关文章进一步学习,感谢大家的阅读和支持。

Python 相关电子书
学习笔记

Copyright 2018-2020 www.xz577.com 码农之家

版权投诉 / 书籍推广 / 赞助:520161757@qq.com