技术文章
当前位置:首页 > Mysql技术文章 > MySQL性能优化

MySQL性能优化总结

  • 发布时间:
  • 作者:码农之家原创
  • 点击:167

这篇文章主要知识点是关于MySQL性能、19个MySQL性能优化要点解析 的内容,如果大家想对相关知识点有系统深入的学习,可以参阅以下电子书

PHP、MySQL与JavaScript学习手册
  • 类型:PHP大小:76 MB格式:PDF出版:中国电力出版社作者:Robin Nixon
立即下载

更多Mysql相关的学习资源可以参阅 Mysql电子书程序设计电子书 等栏目。

MySQL性能优化

1. 简介

在Web应用程序体系架构中,数据持久层(通常是一个关系数据库)是关键的核心部分,它对系统的性能有非常重要的影响。MySQL是目前使用最多的开源数据库,但是MySQL数据库的默认设置性能非常的差,仅仅是一个玩具数据库。因此在产品中使用MySQL数据库必须进行必要的优化。
优化是一个复杂的任务,本文描述MySQL相关的数据库设计和查询优化,服务器端优化,存储引擎优化。

2. 数据库设计和查询优化
在MySQL Server性能调优中,首先要考虑的就是Database Schema设计,这一点是非常重要的。一个糟糕的Schema设计即使在性能调优的MySQL Server上运行,也会表现出很差的性能;和Schema相似,查询语句的设计也会影响MySQL的性能,应该避免写出低效的SQL查询。这一节将详细讨论这两方面的优化。

2.1 Schema Design
Schema的优化取决于将要运行什么样的query,不同的query会有不同的Schema优化方案。2.2节将介绍Query Design的优化。Schema设计同样受到预期数据集大小的影响。Schema设计时主要考虑:标准化,数据类型,索引。

2.1.1 标准化

标准化是在数据库中组织数据的过程。其中包括,根据设计规则创建表并在这些表间建立关系;通过取消冗余度与不一致相关性,该设计规则可以同时保护数据并提高数据的灵活性。通常数据库标准化是让数据库设计符合某一级别的范式,通常满足第三范式即可。也有第四范式(也称为 Boyce Codd范式,BCNF))与第五范式存在,但是在实际设计中很少考虑。忽视这些规则可能使得数据库的设计不太完美,但这不应影响功能。
标准化的特点:

1) 所有的“对象”都在它自己的table中,没有冗余。
2) 数据库通常由E-R图生成。
3) 简洁,更新属性通常只需要更新很少的记录。
4) Join操作比较耗时。
5) Select,sort优化措施比较少。
6) 适用于OLTP应用。

非标准化的特点:

1) 在一张表中存储很多数据,数据冗余。
2) 更新数据开销很大,更新一个属性可能会更新很多表,很多记录。
3) 在删除数据是有可能丢失数据。
4) Select,order有很多优化的选择。
5) 适用于DSS应用。


标准化和非标准化都有各自的优缺点,通常在一个数据库设计中可以混合使用,一部分表格标准化,一部分表格保留一些冗余数据:

1) 对OLTP使用标准化,对DSS使用非标准化
2) 使用物化视图。MySQL不直接支持该数据库特性,但是可以用MyISAM表代替。
3) 冗余一些数据在表格中,例如将ref_id和name存在同一张表中。但是要注意更新问题。
4) 对于一些简单的对象,直接使用value作为建。例如IP address等
5) Reference by PRIMARY/UNIQUE KEY。MySQL可以优化这种操作,例如:

java 代码
select city_name
from city,state
where state_id=state.id and state.code=‘CA'” converted to “select city_name from city where state_id=12


2.1.2 数据类型
最基本的优化之一就是使表在磁盘上占据的空间尽可能小。这能带来性能非常大的提升,因为数据小,磁盘读入较快,并且在查询过程中表内容被处理所占用的内存更少。同时,在更小的列上建索引,索引也会占用更少的资源。
可以使用下面的技术可以使表的性能更好并且使存储空间最小:

1) 使用正确合适的类型,不要将数字存储为字符串。
2) 尽可能地使用最有效(最小)的数据类型。MySQL有很多节省磁盘空间和内存的专业化类型。
3) 尽可能使用较小的整数类型使表更小。例如,MEDIUMINT经常比INT好一些,因为MEDIUMINT列使用的空间要少25%。
4) 如果可能,声明列为NOT NULL。它使任何事情更快而且每列可以节省一位。注意如果在应用程序中确实需要NULL,应该毫无疑问使用它,只是避免 默认地在所有列上有它。
5) 对于MyISAM表,如果没有任何变长列(VARCHAR、TEXT或BLOB列),使用固定尺寸的记录格式。这比较快但是不幸地可能会浪费一些空间。即使你已经用CREATE选项让VARCHAR列ROW_FORMAT=fixed,也可以提示想使用固定长度的行。
6) 使用sample character set,例如latin1。尽量少使用utf-8,因为utf-8占用的空间是latin1的3倍。可以在不需要使用utf-8的字段上面使用latin1,例如mail,url等。


2.1.3 索引
所有MySQL列类型可以被索引。对相关列使用索引是提高SELECT操作性能的最佳途径。使用索引应该注意以下几点:

1) MySQL只会使用前缀,例如key(a, b) …where b=5 将使用不到索引。
2) 要选择性的使用索引。在变化很少的列上使用索引并不是很好,例如性别列。
3) 在Unique列上定义Unique index。
4) 避免建立使用不到的索引。
5) 在Btree index中(InnoDB使用Btree),可以在需要排序的列上建立索引。
6) 避免重复的索引。
7) 避免在已有索引的前缀上建立索引。例如:如果存在index(a,b)则去掉index(a)。
8) 控制单个索引的长度。使用key(name(8))在数据的前面几个字符建立索引。
9) 越是短的键值越好,最好使用integer。
10) 在查询中要使用到索引(使用explain查看),可以减少读磁盘的次数,加速读取数据。
11) 相近的键值比随机好。Auto_increment就比uuid好。
12) Optimize table可以压缩和排序index,注意不要频繁运行。
13) Analyze table可以更新数据。

2.2 Designing queries
查询语句的优化是一个Case by case的问题,不同的sql有不同的优化方案,在这里我只列出一些通用的技巧。

1) 在有index的情况下,尽量保证查询使用了正确的index。可以使用EXPLAIN select …查看结果,分析查询。
2) 查询时使用匹配的类型。例如select * from a where id=5, 如果这里id是字符类型,同时有index,这条查询则使用不到index,会做全表扫描,速度会很慢。正确的应该是 … where id=”5” ,加上引号表明类型是字符。
3) 使用--log-slow-queries –long-query-time=2查看查询比较慢的语句。然后使用explain分析查询,做出优化。

3. 服务器端优化

3.1 MySQL安装
MySQL有很多发行版本,最好使用MySQL AB发布的二进制版本。也可以下载源代码进行编译安装,但是编译器和类库的一些bug可能会使编译完成的MySQL存在潜在的问题。
如果安装MySQL的服务器使用的是Intel公司的处理器,可以使用intel c++编译的版本,在Linux World2005的一篇PPT中提到,使用intel C++编译器编译的MySQL查询速度比正常版本快30%左右。Intel c++编译版本可以在MySQL官方网站下载。

3.2 服务器设置优化
MySQL默认的设置性能很差,所以要做一些参数的调整。这一节介绍一些通用的参数调整,不涉及具体的存储引擎(主要指MyISAM,InnoDB,相关优化在4中介绍)。

--character-set:如果是单一语言使用简单的character set例如latin1。尽量少用Utf-8,utf-8占用空间较多。
--memlock:锁定MySQL只能运行在内存中,避免swapping,但是如果内存不够时有可能出现错误。
--max_allowed_packet:要足够大,以适应比较大的SQL查询,对性能没有太大影响,主要是避免出现packet错误。
--max_connections:server允许的最大连接。太大的话会出现out of memory。
--table_cache:MySQL在同一时间保持打开的table的数量。打开table开销比较大。一般设置为512。
--query_cache_size: 用于缓存查询的内存大小。
--datadir:mysql存放数据的根目录,和安装文件分开在不同的磁盘可以提高一点性能。

4. 存储引擎优化

MySQL支持不同的存储引擎,主要使用的有MyISAM和InnoDB。

4.1 MyISAM
MyISAM管理非事务表。它提供高速存储和检索,以及全文搜索能力。MyISAM在所有MySQL配置里被支持,它是默认的存储引擎,除非配置MySQL默认使用另外一个引擎。

4.1.1 MyISAM特性
4.1.1.1 MyISAM Properties

1) 不支持事务,宕机会破坏表
2) 使用较小的内存和磁盘空间
3) 基于表的锁,并发更新数据会出现严重性能问题
4) MySQL只缓存Index,数据由OS缓存

4.1.1.2 Typical MyISAM usages

1) 日志系统
2) 只读或者绝大部分是读操作的应用
3) 全表扫描
4) 批量导入数据
5) 没有事务的低并发读/写

4.1.2 MyISAM优化要点

1) 声明列为NOT NULL,可以减少磁盘存储。
2) 使用optimize table做碎片整理,回收空闲空间。注意仅仅在非常大的数据变化后运行。
3) Deleting/updating/adding大量数据的时候禁止使用index。使用ALTER TABLE t DISABLE KEYS。
4) 设置myisam_max_[extra]_sort_file_size足够大,可以显著提高repair table的速度。

4.1.3 MyISAM Table Locks

1) 避免并发insert,update。
2) 可以使用insert delayed,但是有可能丢失数据。
3) 优化查询语句。
4) 水平分区。
5) 垂直分区。
6) 如果都不起作用,使用InnoDB。

4.1.4 MyISAM Key Cache

1) 设置key_buffer_size variable。MyISAN最主要的cache设置,用于缓存MyISAM表格的index数据,该参数只对MyISAM有影响。通常在只使用MyISAM的Server中设置25-33%的内存大小。
2) 可以使用几个不同的Key Caches(对一些hot data)。

a) SET GLOBAL test.key_buffer_size=512*1024;
b) CACHE INDEX t1.i1, t2.i1, t3 IN test;

2) Preload index到Cache中可以提高查询速度。因为preloading index是顺序的,所以非常快。

a) LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;

4.2 InnoDB
InnoDB给MySQL提供了具有提交,回滚和崩溃恢复能力的事务安全(ACID兼容)存储引擎。InnoDB提供row level lock,并且也在SELECT语句提供一个Oracle风格一致的非锁定读。这些特色增加了多用户部署和性能。没有在InnoDB中扩大锁定的需要,因为在InnoDB中row level lock适合非常小的空间。InnoDB也支持FOREIGN KEY约束。在SQL查询中,你可以自由地将InnoDB类型的表与其它MySQL的表的类型混合起来,甚至在同一个查询中也可以混合。
InnoDB是为在处理巨大数据量时获得最大性能而设计的。它的CPU使用效率非常高。
InnoDB存储引擎已经完全与MySQL服务器整合,InnoDB存储引擎为在内存中缓存数据和索引而维持它自己的缓冲池。 InnoDB存储它的表&索引在一个表空间中,表空间可以包含数个文件(或原始磁盘分区)。这与MyISAM表不同,比如在MyISAM表中每个表被存在分离的文件中。InnoDB 表可以是任何大小,即使在文件尺寸被限制为2GB的操作系统上。
许多需要高性能的大型数据库站点上使用了InnoDB引擎。著名的Internet新闻站点Slashdot.org运行在InnoDB上。 Mytrix, Inc.在InnoDB上存储超过1TB的数据,还有一些其它站点在InnoDB上处理平均每秒800次插入/更新的负荷。
4.2.1 InnoDB特性
4.2.1.1 InnoDB Properties

1) 支持事务,ACID,外键。
2) Row level locks。
3) 支持不同的隔离级别。
4) 和MyISAM相比需要较多的内存和磁盘空间。
5) 没有键压缩。
6) 数据和索引都缓存在内存hash表中。

4.2.1.2 InnoDB Good For

1) 需要事务的应用。
2) 高并发的应用。
3) 自动恢复。
4) 较快速的基于主键的操作。

4.2.2 InnoDB优化要点

1) 尽量使用short,integer的主键。
2) Load/Insert数据时按主键顺序。如果数据没有按主键排序,先排序然后再进行数据库操作。
3) 在Load数据是为设置SET UNIQUE_CHECKS=0,SET FOREIGN_KEY_CHECKS=0,可以避免外键和唯一性约束检查的开销。
4) 使用prefix keys。因为InnoDB没有key压缩功能。

4.2.3 InnoDB服务器端设定

innodb_buffer_pool_size:这是InnoDB最重要的设置,对InnoDB性能有决定性的影响。默认的设置只有8M,所以默认的数据库设置下面InnoDB性能很差。在只有InnoDB存储引擎的数据库服务器上面,可以设置60-80%的内存。更精确一点,在内存容量允许的情况下面设置比InnoDB tablespaces大10%的内存大小。

innodb_data_file_path:指定表数据和索引存储的空间,可以是一个或者多个文件。最后一个数据文件必须是自动扩充的,也只有最后一个文件允许自动扩充。这样,当空间用完后,自动扩充数据文件就会自动增长(以8MB为单位)以容纳额外的数据。例如: innodb_data_file_path=/disk1/ibdata1:900M;/disk2/ibdata2:50M:autoextend两个数据文件放在不同的磁盘上。数据首先放在ibdata1中,当达到900M以后,数据就放在ibdata2中。一旦达到50MB,ibdata2将以8MB为单位自动增长。如果磁盘满了,需要在另外的磁盘上面增加一个数据文件。
innodb_autoextend_increment: 默认是8M, 如果一次insert数据量比较多的话, 可以适当增加.

innodb_data_home_dir:放置表空间数据的目录,默认在mysql的数据目录,设置到和MySQL安装文件不同的分区可以提高性能。

innodb_log_file_size:该参数决定了recovery speed。太大的话recovery就会比较慢,太小了影响查询性能,一般取256M可以兼顾性能和recovery的速度

innodb_log_buffer_size:磁盘速度是很慢的,直接将log写道磁盘会影响InnoDB的性能,该参数设定了log buffer的大小,一般4M。如果有大的blob操作,可以适当增大。

innodb_flush_logs_at_trx_commit=2: 该参数设定了事务提交时内存中log信息的处理。

1) =1时,在每个事务提交时,日志缓冲被写到日志文件,对日志文件做到磁盘操作的刷新。Truly ACID。速度慢。
2) =2时,在每个事务提交时,日志缓冲被写到文件,但不对日志文件做到磁盘操作的刷新。只有操作系统崩溃或掉电才会删除最后一秒的事务,不然不会丢失事务。
3) =0时, 日志缓冲每秒一次地被写到日志文件,并且对日志文件做到磁盘操作的刷新。任何mysqld进程的崩溃会删除崩溃前最后一秒的事务

innodb_file_per_table:可以存储每个InnoDB表和它的索引在它自己的文件中。

transaction-isolation=READ-COMITTED: 如果应用程序可以运行在READ-COMMITED隔离级别,做此设定会有一定的性能提升。

innodb_flush_method: 设置InnoDB同步IO的方式:

1) Default – 使用fsync()。
2) O_SYNC 以sync模式打开文件,通常比较慢。
3) O_DIRECT,在Linux上使用Direct IO。可以显著提高速度,特别是在RAID系统上。避免额外的数据复制和double buffering(mysql buffering 和OS buffering)。

innodb_thread_concurrency: InnoDB kernel最大的线程数。

1) 最少设置为(num_disks+num_cpus)*2。
2) 可以通过设置成1000来禁止这个限制

5. 缓存

缓存有很多种,为应用程序加上适当的缓存策略会显著提高应用程序的性能。由于应用缓存是一个比较大的话题,所以这一部分还需要进一步调研。

6. Reference
1) http://www.mysqlperformanceblog.com/
2) Advanced MySQL Performance Optimization, Peter Zaitsev, Tobias Asplund, MySQL Users Conference 2005
3) Improving MySQL Server Performance with Intel C++ Compiler,Peter Zaitsev,Linux World 2005
4) MySQL Performance Optimization, Peter Zaitsev, Percona Ltd, OPEN SOURCE DATABASE CONFERENCE 2006
5) MySQL Server Settings Tuning, Peter Zaitsev, co-founder, Percona Ltd, 2007
6) MySQL Reference Manual

19个MySQL性能优化要点解析

以下就是跟大家分享的19个MySQL性能优化主要要点,一起学习学习。

1、为查询优化你的查询
大多数的MySQL服务器都开启了查询缓存。这是提高性最有效的方法之一,而且这是被MySQL的数据库引擎处理的。当有很多相同的查询被执行了多次的时候,这些查询结果会被放到一个缓存中,这样,后续的相同的查询就不用操作表而直接访问缓存结果了。

这里最主要的问题是,对于程序员来说,这个事情是很容易被忽略的。因为,我们某些查询语句会让MySQL不使用缓存。请看下面的示例:

// 查询缓存不开启 $r = mysql_query("SELECT username FROM user WHERE  signup_date >= CURDATE()"); // 开启查询缓存 $today = date("Y-m-d"); $r = mysql_query("SELECT username FROM user WHERE signup_date >= '$today'");

上面两条SQL语句的差别就是 CURDATE() ,MySQL的查询缓存对这个函数不起作用。所以,像 NOW() 和 RAND() 或是其它的诸如此类的SQL函数都不会开启查询缓存,因为这些函数的返回是会不定的易变的。所以,你所需要的就是用一个变量来代替MySQL的函数,从而开启缓存。

2、EXPLAIN 你的SELECT查询
使用EXPLAIN关键字可以让你知道MySQL是如何处理你的SQL语句的。

有表关联的查询,如下列:

select username, group_name from users u joins groups g on (u.group_id = g.id)

发现查询缓慢,然后在group_id字段上增加索引,则会加快查询

3、当只要一行数据时使用LIMIT 1
当你查询表的有些时候,你已经知道结果只会有一条结果,单因为你可能需要去fetch游标,或是你也许会去检查返回的记录数。

在这种情况下,加上LIMIT 1 可以增加性能。这样一样, MySQL数据库引擎会在找到一条数据后停止搜索,而不是继续往后查找下一条符合记录的数据。

下面的示例,只是为了找一下是否有“中国”的用户,很明显,后面的会比前面的更有效率。(请注意,第一条中是Select *,第二条是Select 1)

// 没有效率的: $r = mysql_query("SELECT * FROM user WHERE country = 'China'"); if (mysql_num_rows($r) > 0) {  // ... } // 有效率的: $r = mysql_query("SELECT 1 FROM user WHERE country = 'China' LIMIT 1"); if (mysql_num_rows($r) > 0) { // ... }

4、为搜索字段建索引
索引并不一定就是给主键或是唯一的字段。如果在你的表中,有某个字段你总要会经常用来做搜索,那么,请为其建立索引吧。

5、在Join表的时候使用相当类型的列,并将其索引
如果你的应用程序有很多JOIN查询,你应该确认两个表中Join的字段是被建过索引的。这样,MySQL内部会启动为你优化Join的SQL语句的机制。

而且,这些被用来Join的字段,应该是相同的类型的。例如:如果你要把DECIMAL字段和一个INT字段JOIN在一起,MYSQL就无法使用他们的索引。对于那些STRING类型,还需要有相同的字符集才行(两个表的字符集有可能不一样)

6、千万不要ORDER BY RAND()

7、避免SELECT *
从数据库里读出越多的数据,那么查询就会变得越慢。并且,如果你的数据库服务器和WEB服务器是两台独立的服务器的话,这还会增加网络传输的负载。

所以,你应该养成一个需要什么就取什么的好的习惯。

// 不推荐 $r = mysql_query("SELECT * FROM user WHERE user_id = 1"); $d = mysql_fetch_assoc($r); echo "Welcome {$d['username']}"; // 推荐 $r = mysql_query("SELECT username FROM user WHERE user_id = 1"); $d = mysql_fetch_assoc($r); echo "Welcome {$d['username']}";

8、永远为两张表设置一个ID
我们应该为数据库里的每张表都设置一个ID作为其主键,而最好的是一个INT型(推荐使用UNSIGNED),并设置上自动增长的AUTO INCREMENT标志。

就算是你 users 表有一个主键叫 “email”的字段,你也别让它成为主键。使用 VARCHAR 类型来当主键会使用得性能下降。另外,在你的程序中,你应该使用表的ID来构造你的数据结构。 而且,在MySQL数据引擎下,还有一些操作需要使用主键,在这些情况下,主键的性能和设置变得非常重要,比如,集群,分区……

9、使用 ENUM 而不是 VARCHAR ?
ENUM 类型是非常快和紧凑的。在实际上,其保存的是 TINYINT,但其外表上显示为字符串。这样一来,用这个字段来做一些选项列表变得相当的完美。

如果你有一个字段,比如“性别”,“国家”,“民族”,“状态”或“部门”,你知道这些字段的取值是有限而且固定的,那么,你应该使用 ENUM 而不是 VARCHAR。

10、从 PROCEDURE ANALYSE() 取得建议 ?
PROCEDURE ANALYSE() 会让 MySQL 帮你去分析你的字段和其实际的数据,并会给你一些有用的建议。只有表中有实际的数据,这些建议才会变得有用,因为要做一些大的决定是需要有数据作为基础的。

例如,如果你创建了一个 INT 字段作为你的主键,然而并没有太多的数据,那么,PROCEDURE ANALYSE()会建议你把这个字段的类型改成 MEDIUMINT 。或是你使用了一个 VARCHAR 字段,因为数据不多,你可能会得到一个让你把它改成 ENUM 的建议。这些建议,都是可能因为数据不够多,所以决策做得就不够准。

11、尽可能的使用 NOT NULL
除非你有一个很特别的原因去使用 NULL 值,你应该总是让你的字段保持 NOT NULL。这看起来好像有点争议,请往下看。

首先,问问你自己“Empty”和“NULL”有多大的区别(如果是INT,那就是0和NULL)?如果你觉得它们之间没有什么区别,那么你就不要使用NULL。(你知道吗?在 Oracle 里,NULL 和 Empty 的字符串是一样的!)

不要以为 NULL 不需要空间,其需要额外的空间,并且,在你进行比较的时候,你的程序会更复杂。 当然,这里并不是说你就不能使用NULL了,现实情况是很复杂的,依然会有些情况下,你需要使用NULL值。

下面摘自MySQL自己的文档

“NULL columns require additional space in the row to record whether their values are NULL. For MyISAM tables, each NULL column takes one bit extra, rounded up to the nearest byte.”

12、把IP地址存成 UNSIGNED INT
很多程序员都会创建一个 VARCHAR(15) 字段来存放字符串形式的IP而不是整形的IP。如果你用整形来存放,只需要4个字节,并且你可以有定长的字段。而且,这会为你带来查询上的优势,尤其是当你需要使用这样的WHERE条件:IP between ip1 and ip2。

我们必需要使用UNSIGNED INT,因为 IP地址会使用整个32位的无符号整形

13、固定长度的表会更快
如果表中的所有字段都是“固定长度”的,整个表会被认为是 “static” 或 “fixed-length”。 例如,表中没有如下类型的字段: VARCHAR,TEXT,BLOB。只要你包括了其中一个这些字段,那么这个表就不是“固定长度静态表”了,这样,MySQL 引擎会用另一种方法来处理。

固定长度的表会提高性能,因为MySQL搜寻得会更快一些,因为这些固定的长度是很容易计算下一个数据的偏移量的,所以读取的自然也会很快。而如果字段不是定长的,那么,每一次要找下一条的话,需要程序找到主键。

并且,固定长度的表也更容易被缓存和重建。不过,唯一的副作用是,固定长度的字段会浪费一些空间,因为定长的字段无论你用不用,他都是要分配那么多的空间。

14、垂直分割
“垂直分割”是一种把数据库中的表按列变成几张表的方法,这样可以降低表的复杂度和字段的数目,从而达到优化的目的。(以前,在银行做过项目,见过一张表有100多个字段,很恐怖)

示例一:在Users表中有一个字段是家庭地址,这个字段是可选字段,相比起,而且你在数据库操作的时候除了个人信息外,你并不需要经常读取或是改写这个字段。那么,为什么不把他放到另外一张表中呢? 这样会让你的表有更好的性能,大家想想是不是,大量的时候,我对于用户表来说,只有用户ID,用户名,口令,用户角色等会被经常使用。小一点的表总是会有好的性能。

示例二: 你有一个叫 “last_login” 的字段,它会在每次用户登录时被更新。但是,每次更新时会导致该表的查询缓存被清空。所以,你可以把这个字段放到另一个表中,这样就不会影响你对用户 ID,用户名,用户角色的不停地读取了,因为查询缓存会帮你增加很多性能。

另外,你需要注意的是,这些被分出去的字段所形成的表,你不会经常性地去Join他们,不然的话,这样的性能会比不分割时还要差,而且,会是极数级的下降。

15、拆分大的 DELETE 或 INSERT 语句
如果你需要在一个在线的网站上去执行一个大的 DELETE 或 INSERT 查询,你需要非常小心,要避免你的操作让你的整个网站停止相应。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。

Apache 会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也不希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是内存。

如果你把你的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程/线程,数据库链接,打开的文件数,可能不仅仅会让你泊WEB服务Crash,还可能会让你的整台服务器马上挂了。

所以,如果你有一个大的处理,你定你一定把其拆分,使用 LIMIT 条件是一个好的方法。下面是一个示例:

while (1) { //每次只做1000条 mysql_query("DELETE FROM logs WHERE log_date <= '2009-11-01' LIMIT 1000"); if (mysql_affected_rows() == 0) {     // 没得可删了,退出!     break; } // 每次都要休息一会儿 usleep(50000); }

16、 越小的列会越快
对于大多数的数据库引擎来说,硬盘操作可能是最重大的瓶颈。所以,把你的数据变得紧凑会对这种情况非常有帮助,因为这减少了对硬盘的访问。

参看 MySQL 的文档 Storage Requirements 查看所有的数据类型。

如果一个表只会有几列罢了(比如说字典表,配置表),那么,我们就没有理由使用 INT 来做主键,使用 MEDIUMINT, SMALLINT 或是更小的 TINYINT 会更经济一些。如果你不需要记录时间,使用 DATE 要比 DATETIME 好得多。

当然,你也需要留够足够的扩展空间,不然,你日后来干这个事,你会死的很难看,参看Slashdot的例子(2009年11月06日),一个简单的ALTER TABLE语句花了3个多小时,因为里面有一千六百万条数据。

17、选择一个正确的存储引擎
在 MySQL 中有两个存储引擎 MyISAM 和 InnoDB,每个引擎都有利有弊。酷壳以前文章《MySQL: InnoDB 还是 MyISAM?》讨论和这个事情。

MyISAM 适合于一些需要大量查询的应用,但其对于有大量写操作并不是很好。甚至你只是需要update一个字段,整个表都会被锁起来,而别的进程,就算是读进程都无法操作直到读操作完成。另外,MyISAM 对于 SELECT COUNT(*) 这类的计算是超快无比的。

InnoDB 的趋势会是一个非常复杂的存储引擎,对于一些小的应用,它会比 MyISAM 还慢。他是它支持“行锁” ,于是在写操作比较多的时候,会更优秀。并且,他还支持更多的高级应用,比如:事务。

18、小心“永久链接”
“永久链接”的目的是用来减少重新创建MySQL链接的次数。当一个链接被创建了,它会永远处在连接的状态,就算是数据库操作已经结束了。而且,自从我们的 Apache开始重用它的子进程后——也就是说,下一次的HTTP请求会重用Apache的子进程,并重用相同的 MySQL 链接。

PHP手册:mysql_pconnect()

在理论上来说,这听起来非常的不错。但是从个人经验(也是大多数人的)上来说,这个功能制造出来的麻烦事更多。因为,你只有有限的链接数,内存问题,文件句柄数,等等。

而且,Apache 运行在极端并行的环境中,会创建很多很多的了进程。这就是为什么这种“永久链接”的机制工作地不好的原因。在你决定要使用“永久链接”之前,你需要好好地考虑一下你的整个系统的架构。

19、当查询较慢的时候,可用Join来改写一下该查询来进行优化

mysql> select sql_no_cache * from guang_deal_outs where deal_id in (select id from guang_deals where id = 100017151) ; Empty set (18.87 sec)  mysql> select sql_no_cache a.* from guang_deal_outs a inner join guang_deals b on a.deal_id = b.id where b.id = 100017151;  Empty set (0.01 sec)

原因

mysql> desc select sql_no_cache * from guang_deal_outs where deal_id in (select id from guang_deals where id = 100017151) ; +----+--------------------+-----------------+-------+---------------+---------+---------+-------+----------+-------------+ | id | select_type  | table   | type | possible_keys | key  | key_len | ref | rows  | Extra  | +----+--------------------+-----------------+-------+---------------+--------- +---------+-------+----------+-------------+ | 1 | PRIMARY   | guang_deal_outs | ALL | NULL   | NULL |  NULL | NULL | 18633779 | Using where | | 2 | DEPENDENT SUBQUERY | guang_deals  | const | PRIMARY  | PRIMARY |  4  | const |  1 | Using index | +----+--------------------+-----------------+-------+---------------+--------- +---------+-------+----------+-------------+ 2 rows in set (0.04 sec) mysql> desc select sql_no_cache a.* from guang_deal_outs a inner join guang_deals b on a.deal_id = b.id where b.id = 100017151; +----+-------------+-------+-------+---------------------- +----------------------+---------+-------+------+-------------+ | id | select_type | table | type | possible_keys  | key      | key_len | ref | rows | Extra  | +----+-------------+-------+-------+---------------------- +----------------------+---------+-------+------+-------------+ | 1 | SIMPLE  | b  | const | PRIMARY    | PRIMARY     | 4  | const | 1 | Using index | | 1 | SIMPLE  | a  | ref | idx_guang_dlout_dlid |  idx_guang_dlout_dlid | 4  | const | 1 |    | +----+-------------+-------+-------+---------------------- +----------------------+---------+-------+------+-------------+ 2 rows in set (0.05 sec)

其实在  guang_deal_outs 在deal_id 上也是有索引的。 其实我想把子查询设置为

select * from guang_deal_outs where deal_id in (select id from guang_deals where id = 100017151);

变成下面的样子

select * from guang_deal_outs where deal_id in (100017151);

但不幸的是,实际情况正好相反。MySQL试图让它和外面的表产生联系来“帮助”优化查询,它认为下面的exists形式更有效率

select * from guang_deal_outs where exists (select * from guang_deals where id = 100017151 and id = guang_deal_outs.deal_id);

这种in子查询的形式,在外部表(比如上面的guang_deals)数据量比较大的时候效率是很差的(如果对于较小的表,不会造成显著地影响)

以上就是MySQL性能优化19个要点解析,希望对大家优化MySQL性能有所帮助。

以上就是本次给大家分享的关于Mysql的全部知识点内容总结,大家还可以在下方相关文章里找到MySQL中的CONCAT函数使用方法、 MySQL 5.7增强版Semisync Repl、 MySQL性能优化总结、 等mysql文章进一步学习,感谢大家的阅读和支持。

上一篇:MySQL数据库查看数据表占用空间大小和记录数的实例讲解

下一篇:整理MySQL基本命令、常用命令

展开 +

收起 -

MySQL优化 相关电子书
学习笔记
网友NO.719574

Mysql性能优化案例研究-覆盖索引和SQL_NO_CACHE

场景 产品中有一张图片表pics,数据量将近100万条,有一条相关的查询语句,由于执行频次较高,想针对此语句进行优化 表结构很简单,主要字段: 复制代码 代码如下: user_id 用户ID picname 图片名称 smallimg 小图名称 一个用户会有多条图片记录,现在有一个根据user_id建立的索引:uid,查询语句也很简单:取得某用户的图片集合: 复制代码 代码如下: select picname, smallimg from pics where user_id = xxx; 优化前 执行查询语句(为了查看真实执行时间,强制不使用缓存,为了防止在测试时因为读取了缓存造成对时间上的差别) 复制代码 代码如下: select SQL_NO_CACHE picname, smallimg from pics where user_id=17853; 执行了10次,平均耗时在40ms左右 使用explain进行分析: 复制代码 代码如下: explain select SQL_NO_CACHE picname, smallimg from pics where user_id=17853 使用了user_id的索引,并且是const常数查……

网友NO.758130

MySQL批量SQL插入性能优化详解

对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久。因此,优化数据库插入性能是很有意义的。 经过对MySQL innodb的一些性能测试,发现一些可以提高insert效率的方法,供大家参考参考。 1. 一条SQL语句插入多条数据。 常用的插入语句如: INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0); INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1); 修改成: INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0), ('1', 'userid_1', 'content_1', 1); 修改后的插入操作能够提高程序的插入效率。这里第二种SQL执行效率高的主要原因是合并后日志量(MySQL的b……

网友NO.380599

解析MySQL数据库性能优化的六大技巧

数据库表表面上存在索引和防错机制,然而一个简单的查询就会耗费很长时间。Web应用程序或许在开发环境中运行良好,但在产品环境中表现同样糟糕。如果你是个数据库管理员,你很有可能已经在某个阶段遇到上述情况。因此,本文将介绍对MySQL进行性能优化的技巧和窍门。 1.存储引擎的选择 如果数据表需要事务处理,应该考虑使用InnoDB,因为它完全符合ACID特性。如果不需要事务处理,使用默认存储引擎MyISAM是比较明智的。并且不要尝试同时使用这两个存储引擎。思考一下:在一个事务处理中,一些数据表使用InnoDB,而其余的使用MyISAM。结果呢?整个subject将被取消,只有那些在事务处理中的被带回到原始状态,其余的被提交的数据转存,这将导致整个数据库的冲突。然而存在一个简单的方法可以同时利用两个存储引擎的优势。目前大多数MySQL套件中……

网友NO.593281

MySQL索引背后的之使用策略及优化(高性能索引策略)

本章的内容完全基于上文的理论基础,实际上一旦理解了索引背后的机制,那么选择高性能的策略就变成了纯粹的推理,并且可以理解这些策略背后的逻辑。 示例数据库 为了讨论索引策略,需要一个数据量不算小的数据库作为示例。本文选用MySQL官方文档中提供的示例数据库之一:employees。这个数据库关系复杂度适中,且数据量较大。下图是这个数据库的E-R关系图(引用自MySQL官方手册): 图12 MySQL官方文档中关于此数据库的页面为http://dev.mysql.com/doc/employee/en/employee.html。里面详细介绍了此数据库,并提供了下载地址和导入方法,如果有兴趣导入此数据库到自己的MySQL可以参考文中内容。 最左前缀原理与相关优化 高效使用索引的首要条件是知道什么样的查询会使用到索引,这个问题和B+Tree中的“最左前缀原理”有关,下面通过例子说明最左前缀原理。……

网友NO.550683

mysql千万级数据分页查询性能优化

mysql数据量大时使用limit分页,随着页码的增大,查询效率越低下。 实验 1.直接使用用limit start, count分页语句: select * from order limit start, count 当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下: select * from order limit 10, 20 0.016秒select * from order limit 100, 20 0.016秒select * from order limit 1000, 20 0.047秒select * from order limit 10000, 20 0.094秒 我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下 select * from order limit 400000, 20 3.229秒 再看我们取最后一页记录的时间 select * from order limit 800000, 20 37.44秒 显然这种时间是无法忍受的。 从中我们也能总结出两件事情: 1)limit语句的查询时间与起始记录的位置成正比 2)mysql的limit语句……

<
1
>

Copyright 2018-2020 xz577.com 码农之家

电子书资源由网友、会员提供上传,本站记录提供者的基本信息及资源来路

鸣谢: “ 码小辫 ” 公众号提供回调API服务、“ 脚本CDN ”提供网站加速(本站寻求更多赞助支持)

版权投诉 / 书籍推广 / 赞助:520161757@qq.com

上传资源(网友、会员均可提供)

查看最新会员资料及资源信息