当前位置:首页 > Python技术文章 > python八大排序算法速度实例对比

总结python八大排序算法速度示例比较

  • 发布时间:
  • 作者:码农之家原创
  • 点击:92

这篇文章主要知识点是关于八大排序、八大排序算法、python、Python实现八大排序算法 的内容,如果大家想对相关知识点有系统深入的学习,可以参阅以下相关资源

Python开发向导/云计算工程师系列

《Python开发向导》 针对开发零基础的人群,采用案例或任务驱动的方式,由入门到精通,采用边讲 解边练习的方式,使读者能够快速掌握Python开发。本书首先介绍了Python的基础知识, 然后介

查看详情

python八大排序算法速度实例对比

这篇文章并不是介绍排序算法原理的,纯粹是想比较一下各种排序算法在真实场景下的运行速度。

算法由 Python 实现,可能会和其他语言有些区别,仅当参考就好。

测试的数据是自动生成的,以数组形式保存到文件中,保证数据源的一致性。

排序算法

python八大排序算法速度实例对比

直接插入排序

时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:稳定

def insert_sort(array):
  for i in range(len(array)):
    for j in range(i):
      if array[i] < array[j]:
        array.insert(j, array.pop(i))
        break
  return array

希尔排序

时间复杂度:O(n)
空间复杂度:O(n√n)
稳定性:不稳定

def shell_sort(array):
  gap = len(array)
  while gap > 1:
    gap = gap // 2
    for i in range(gap, len(array)):
      for j in range(i % gap, i, gap):
        if array[i] < array[j]:
          array[i], array[j] = array[j], array[i]
  return array

简单选择排序

时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:不稳定

def select_sort(array):
  for i in range(len(array)):
    x = i # min index
    for j in range(i, len(array)):
      if array[j] < array[x]:
        x = j
    array[i], array[x] = array[x], array[i]
  return array

堆排序

时间复杂度:O(nlog₂n)
空间复杂度:O(1)
稳定性:不稳定

def heap_sort(array):
  def heap_adjust(parent):
    child = 2 * parent + 1 # left child
    while child < len(heap):
      if child + 1 < len(heap):
        if heap[child + 1] > heap[child]:
          child += 1 # right child
      if heap[parent] >= heap[child]:
        break
      heap[parent], heap[child] = \
        heap[child], heap[parent]
      parent, child = child, 2 * child + 1

  heap, array = array.copy(), []
  for i in range(len(heap) // 2, -1, -1):
    heap_adjust(i)
  while len(heap) != 0:
    heap[0], heap[-1] = heap[-1], heap[0]
    array.insert(0, heap.pop())
    heap_adjust(0)
  return array

冒泡排序

时间复杂度:O(n²)
空间复杂度:O(1)
稳定性:稳定

def bubble_sort(array):
  for i in range(len(array)):
    for j in range(i, len(array)):
      if array[i] > array[j]:
        array[i], array[j] = array[j], array[i]
  return array

快速排序

时间复杂度:O(nlog₂n)
空间复杂度:O(nlog₂n)
稳定性:不稳定

def quick_sort(array):
  def recursive(begin, end):
    if begin > end:
      return
    l, r = begin, end
    pivot = array[l]
    while l < r:
      while l < r and array[r] > pivot:
        r -= 1
      while l < r and array[l] <= pivot:
        l += 1
      array[l], array[r] = array[r], array[l]
    array[l], array[begin] = pivot, array[l]
    recursive(begin, l - 1)
    recursive(r + 1, end)

  recursive(0, len(array) - 1)
  return array

归并排序

时间复杂度:O(nlog₂n)
空间复杂度:O(1)
稳定性:稳定

def merge_sort(array):
  def merge_arr(arr_l, arr_r):
    array = []
    while len(arr_l) and len(arr_r):
      if arr_l[0] <= arr_r[0]:
        array.append(arr_l.pop(0))
      elif arr_l[0] > arr_r[0]:
        array.append(arr_r.pop(0))
    if len(arr_l) != 0:
      array += arr_l
    elif len(arr_r) != 0:
      array += arr_r
    return array

  def recursive(array):
    if len(array) == 1:
      return array
    mid = len(array) // 2
    arr_l = recursive(array[:mid])
    arr_r = recursive(array[mid:])
    return merge_arr(arr_l, arr_r)

  return recursive(array)

基数排序

时间复杂度:O(d(r+n))
空间复杂度:O(rd+n)
稳定性:稳定

def radix_sort(array):
  bucket, digit = [[]], 0
  while len(bucket[0]) != len(array):
    bucket = [[], [], [], [], [], [], [], [], [], []]
    for i in range(len(array)):
      num = (array[i] // 10 ** digit) % 10
      bucket[num].append(array[i])
    array.clear()
    for i in range(len(bucket)):
      array += bucket[i]
    digit += 1
  return array

速度比较

from random import random
from json import dumps, loads
# 生成随机数文件
def dump_random_array(file='numbers.json', size=10 ** 4):
  fo = open(file, 'w', 1024)
  numlst = list()
  for i in range(size):
    numlst.append(int(random() * 10 ** 10))
  fo.write(dumps(numlst))
  fo.close()
# 加载随机数列表
def load_random_array(file='numbers.json'):
  fo = open(file, 'r', 1024)
  try:
    numlst = fo.read()
  finally:
    fo.close()
  return loads(numlst)
from _datetime import datetime
# 显示函数执行时间
def exectime(func):
  def inner(*args, **kwargs):
    begin = datetime.now()
    result = func(*args, **kwargs)
    end = datetime.now()
    inter = end - begin
    print('E-time:{0}.{1}'.format(
      inter.seconds,
      inter.microseconds
    ))
    return result
  return inner

如果数据量特别大,采用分治算法的快速排序和归并排序,可能会出现递归层次超出限制的错误。

解决办法:导入 sys 模块(import sys),设置最大递归次数(sys.setrecursionlimit(10 ** 8))。

@exectime
def bubble_sort(array):
  for i in range(len(array)):
    for j in range(i, len(array)):
      if array[i] > array[j]:
        array[i], array[j] = array[j], array[i]
  return array
array = load_random_array()
print(bubble_sort(array) == sorted(array))

↑ 示例:测试直接插入排序算法的运行时间,@exectime 为执行时间装饰器。

算法执行时间

python八大排序算法速度实例对比

算法速度比较

python八大排序算法速度实例对比

python八大排序算法速度实例对比

总结

以上就是本文关于Python八大排序算法速度实例对比的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

Python3简单实例计算同花的概率代码

Python语言描述最大连续子序列和

Python实现调度算法代码详解

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

Python实现八大排序算法

如何用Python实现八大排序算法

1、插入排序
描述
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插 入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
代码实现

 def insert_sort(lists): 
  # 插入排序 
  count = len(lists) 
  for i in range(1, count): 
    key = lists[i] 
    j = i - 1 
    while j >= 0: 
      if lists[j] > key: 
        lists[j + 1] = lists[j] 
        lists[j] = key 
      j -= 1 
  return lists 

2、希尔排序
描述 
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于 1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分 成一组,算法便终止。 
代码实现

 def shell_sort(lists): 
  # 希尔排序 
  count = len(lists) 
  step = 2 
  group = count / step 
  while group > 0: 
    for i in range(0, group): 
      j = i + group 
      while j < count: 
        k = j - group 
        key = lists[j] 
        while k >= 0: 
          if lists[k] > key: 
            lists[k + group] = lists[k] 
            lists[k] = key 
          k -= group 
        j += group 
    group /= step 
  return lists 

3、冒泡排序
描述 
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
代码实现

 def bubble_sort(lists): 
  # 冒泡排序 
  count = len(lists) 
  for i in range(0, count): 
    for j in range(i + 1, count): 
      if lists[i] > lists[j]: 
        lists[i], lists[j] = lists[j], lists[i] 
  return lists 

4、快速排序
描述 
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 
代码实现

 def quick_sort(lists, left, right): 
  # 快速排序 
  if left >= right: 
    return lists 
  key = lists[left] 
  low = left 
  high = right 
  while left < right: 
    while left < right and lists[right] >= key: 
      right -= 1 
    lists[left] = lists[right] 
    while left < right and lists[left] <= key: 
      left += 1 
    lists[right] = lists[left] 
  lists[right] = key 
  quick_sort(lists, low, left - 1) 
  quick_sort(lists, left + 1, high) 
  return lists 

5、直接选择排序
描述 
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
代码实现

 def select_sort(lists): 
  # 选择排序 
  count = len(lists) 
  for i in range(0, count): 
    min = i 
    for j in range(i + 1, count): 
      if lists[min] > lists[j]: 
        min = j 
    lists[min], lists[i] = lists[i], lists[min] 
  return lists 

6、堆排序
描述 
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元 素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。 
代码实现

 # 调整堆 
def adjust_heap(lists, i, size): 
  lchild = 2 * i + 1 
  rchild = 2 * i + 2 
  max = i 
  if i < size / 2: 
    if lchild < size and lists[lchild] > lists[max]: 
      max = lchild 
    if rchild < size and lists[rchild] > lists[max]: 
      max = rchild 
    if max != i: 
      lists[max], lists[i] = lists[i], lists[max] 
      adjust_heap(lists, max, size) 
 
# 创建堆 
def build_heap(lists, size): 
  for i in range(0, (size/2))[::-1]: 
    adjust_heap(lists, i, size) 
 
# 堆排序 
def heap_sort(lists): 
  size = len(lists) 
  build_heap(lists, size) 
  for i in range(0, size)[::-1]: 
    lists[0], lists[i] = lists[i], lists[0] 
    adjust_heap(lists, 0, i) 

7、归并排序
描述 
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一 个有序表,称为二路归并。 
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否 则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复 制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序, 最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。 
代码实现

 def merge(left, right): 
  i, j = 0, 0 
  result = [] 
  while i < len(left) and j < len(right): 
    if left[i] <= right[j]: 
      result.append(left[i]) 
      i += 1 
    else: 
      result.append(right[j]) 
      j += 1 
  result += left[i:] 
  result += right[j:] 
  return result 
 
def merge_sort(lists): 
  # 归并排序 
  if len(lists) <= 1: 
    return lists 
  num = len(lists) / 2 
  left = merge_sort(lists[:num]) 
  right = merge_sort(lists[num:]) 
  return merge(left, right) 

8、基数排序
描述 
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
代码实现

 import math 
def radix_sort(lists, radix=10): 
  k = int(math.ceil(math.log(max(lists), radix))) 
  bucket = [[] for i in range(radix)] 
  for i in range(1, k+1): 
    for j in lists: 
      bucket[j/(radix**(i-1)) % (radix**i)].append(j) 
    del lists[:] 
    for z in bucket: 
      lists += z 
      del z[:] 
  return lists

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持码农之家。

以上就是本次给大家分享的关于Python的全部知识点内容总结,大家还可以在下方相关文章里找到Python对象与引用的知识点、 python调用RPC接口的知识点、 Python的重新加载知识点总、 等python文章进一步学习,感谢大家的阅读和支持。

上一篇:Python备份MySQL数据库的代码详解

下一篇:numpy找出array中的最大最小值的方法

展开 +

收起 -

python八大排序算法 相关内容
Python实现基于KNN算法的笔迹识别功能实例代码

这篇文章主要介绍了Python实现基于KNN算法的笔迹识别功能,结合实例形式详细分析了使用KNN算法进行笔迹识别的相关库引入、操作步骤与相关注意事项,需要的朋友可以参考下

查看详情
实例详解Python实现排列组合、破解密码算法

这篇文章主要介绍了Python实现的排列组合、破解密码算法,结合实例形式分析了Python排列组合、密码破解相关数学运算操作技巧,需要的朋友可以参考下

查看详情
Python实现的选择排序算法的实例及代码

这篇文章主要介绍了Python实现的选择排序算法,结合实例形式分析了Python选择排序的概念、原理及简单实现技巧,需要的朋友可以参考下

查看详情
Python实现的简单排列组合算法的实例讲解

这篇文章主要介绍了Python实现的简单排列组合算法,涉及Python使用itertools库进行排列组合运算相关操作技巧,需要的朋友可以参考下

查看详情
Python3程序开发指南

本书全面深入地讲解了Python语言,讲述了构成Python语言的8个关键要素,包含数据类型、控制结构与函数、模块、正则表达式、GUI程序设计等各个方面

查看详情
机器学习:Python实践

本书系统地讲解了机器学习的基本知识,以实践为导向,使用 scikit-learn 作为编程框架,强调简单、快速地建立模型,并利用机器学习解决实际问题

查看详情
Keras快速上手:基于Python的深度学习实战

本书系统地讲解了深度学习的基本知识、建模过程和应用,并以深度学习在推荐系统、图像识别、自然语言处理、文字生成和时间序列中的具体应用为案例,详细介绍了从工具准备、数据获取和

查看详情
Python测试之道

根据Python3.6的检测开发设计实践总结 1.创作者很多年从业检测开发设计管理方面,创作设计风格将文化教育融进衣食住行,趣味有内涵,广受用户五星好评。 2.创作者的內容在百度阅读上浏览

查看详情
Python自动化运维:技术与最佳实践

这书在我国运维管理行业将有里程碑式的关键实际意义:不仅,它是中国第一本从纵、深和实践活动视角讨论Python在运维管理行业运用的经典著作;不仅这书的创作者是我国运维管理行业的超

查看详情
Python入门经典 查看详情
编写高质量代码:改善Python程序的91个建议 查看详情
python八大排序算法 学习笔记
网友NO.904294

python实现八大排序算法(1)

排序 排序是计算机内经常进行的一种操作,其目的是将一组”无序”的记录序列调整为”有序”的记录序列。分内部排序和外部排序。若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。反之,若参加排序的记录数量很大,整个序列的排序过程不可能完全在内存中完成,需要访问外存,则称此类排序问题为外部排序。内部排序的过程是一个逐步扩大记录的有序序列长度的过程。 看图使理解更清晰深刻: 假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,ri=rj,且ri在rj之前,而在排序后的序列中,ri仍在rj之前,则称这种排序算法是稳定的;否则称为不稳定的。 常见排序算法 快速排序、希尔排序、堆排序、直接选择排序不是稳定的排序算法,而基数排序……

网友NO.593973

Python实现八大排序算法

如何用Python实现八大排序算法 1、插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插 入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。 代码实现 def insert_sort(lists): # 插入排序 count = len(lists) for i in range(1, count): key = lists[i] j = i - 1 while j = 0: if lists[j] key: lists[j + 1] = lists[j] lists[j] = key j -= 1 return lists 2、希尔排序 描述 希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法……

网友NO.219219

python实现八大排序算法(2)

本文接上一篇博客python实现的八大排序算法part1,将继续使用python实现八大排序算法中的剩余四个:快速排序、堆排序、归并排序、基数排序 5、快速排序 快速排序是通常被认为在同数量级(O(nlog2n))的排序方法中平均性能最好的。 算法思想: 已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先任取数据a[x]作为基准。比较a[x]与其它数据并排序,使a[x]排在数据的第k位,并且使a[1]~a[k-1]中的每一个数据a[x],a[k+1]~a[n]中的每一个数据a[x],然后采用分治的策略分别对a[1]~a[k-1]和a[k+1]~a[n]两组数据进行快速排序。 优点:极快,数据移动少; 缺点:不稳定。 python代码实现: def quick_sort(list): little = [] pivotList = [] large = [] # 递归出口 if len(list) = 1: return list else: # 将第一个值做为基准 pivot = list[0] for i in list: # 将比基准小的值放到less数列 if i pivot: little.……

网友NO.342336

总结有关python实现八大排序算法(上)

这篇文章主要为大家详细介绍了python实现八大排序算法的第一篇,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 排序 排序是计算机内经常进行的一种操作,其目的是将一组”无序”的记录序列调整为”有序”的记录序列。分内部排序和外部排序。若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。反之,若参加排序的记录数量很大,整个序列的排序过程不可能完全在内存中完成,需要访问外存,则称此类排序问题为外部排序。内部排序的过程是一个逐步扩大记录的有序序列长度的过程。 看图使理解更清晰深刻: 假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,ri=rj,且ri在rj之前,而在排序后的序列中,ri仍在rj之前,则称这种排序算法是稳定……

<
1
>

Copyright 2018-2020 xz577.com 码农之家

本站所有电子书资源不再提供下载地址,只分享来路

免责声明:网站所有作品均由会员网上搜集共同更新,仅供读者预览及学习交流使用,下载后请24小时内删除

版权投诉 / 书籍推广 / 赞助:QQ:520161757