这篇文章主要知识点是关于numpy、append、axis、的内容,如果大家想对相关知识点有系统深入的学习,可以参阅以下电子书
如下所示:
def append(arr, values, axis=None): """ Append values to the end of an array. Parameters ---------- arr : array_like Values are appended to a copy of this array. values : array_like These values are appended to a copy of `arr`. It must be of the correct shape (the same shape as `arr`, excluding `axis`). If `axis` is not specified, `values` can be any shape and will be flattened before use. axis : int, optional The axis along which `values` are appended. If `axis` is not given, both `arr` and `values` are flattened before use. Returns ------- append : ndarray A copy of `arr` with `values` appended to `axis`. Note that `append` does not occur in-place: a new array is allocated and filled. If `axis` is None, `out` is a flattened array.
numpy.append(arr, values, axis=None):
简答来说,就是arr和values会重新组合成一个新的数组,做为返回值。而axis是一个可选的值
当axis无定义时,是横向加成,返回总是为一维数组!
Examples -------- >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) array([1, 2, 3, 4, 5, 6, 7, 8, 9])
当axis有定义的时候,分别为0和1的时候。(注意加载的时候,数组要设置好,行数或者列数要相同。不然会有error:all the input array dimensions except for the concatenation axis must match exactly)
当axis为0时,数组是加在下面(列数要相同):
import numpy as np aa= np.zeros((1,8)) bb=np.ones((3,8)) c = np.append(aa,bb,axis = 0) print(c)
[[ 0. 0. 0. 0. 0. 0. 0. 0.] [ 1. 1. 1. 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1. 1. 1. 1.]]
当axis为1时,数组是加在右边(行数要相同):
import numpy as np aa= np.zeros((3,8)) bb=np.ones((3,1)) c = np.append(aa,bb,axis = 1) print(c)
[[ 0. 0. 0. 0. 0. 0. 0. 0. 1.] [ 0. 0. 0. 0. 0. 0. 0. 0. 1.] [ 0. 0. 0. 0. 0. 0. 0. 0. 1.]]
以上这篇对numpy.append()里的axis的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持码农之家。
以上就是本次给大家分享的关于Python的全部知识点内容总结,大家还可以在下方相关文章里找到python里dict变成list的实例方、 Python3结合Dlib实现人脸识别、 python字符串与url编码转换、 等python文章进一步学习,感谢大家的阅读和支持。
下一篇:多版本python python2和python3共存方法
展开 +
收起 -
Copyright 2018-2020 xz577.com 码农之家
电子书资源由网友、会员提供上传,本站记录提供者的基本信息及资源来路
鸣谢: “ 码小辫 ” 公众号提供回调API服务、“ 脚本CDN ”提供网站加速(本站寻求更多赞助支持)
版权投诉 / 书籍推广 / 赞助:520161757@qq.com
上传资源(网友、会员均可提供)
numpy给array增加维度np.newaxis的实例
如下所示: a[:, np.newaxis] # 给a最外层中括号中的每一个元素加[]a[np.newaxis, :] # 给a最外层中括号中所有元素加[] 以上这篇numpy给array增加维度np.newaxis的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持码农之家。 ……
numpy添加新的维度:newaxis的方法
numpy中包含的newaxis可以给原数组增加一个维度 np.newaxis放的位置不同,产生的新数组也不同 一维数组 x = np.random.randint(1, 8, size=5)xOut[48]: array([4, 6, 6, 6, 5])x1 = x[np.newaxis, :]x1Out[50]: array([[4, 6, 6, 6, 5]])x2 = x[:, np.newaxis]x2Out[52]: array([[4], [6], [6], [6], [5]]) 由以上代码可以看出,当把newaxis放在前面的时候 以前的shape是5,现在变成了1××5,也就是前面的维数发生了变化,后面的维数发生了变化 而把newaxis放后面的时候,输出的新数组的shape就是5××1,也就是后面增加了一个维数 所以,newaxis放在第几个位置,就会在shape里面看到相应的位置增加了一个维数 如下: 一般问题 经常会遇到这样的问题,需要从数组中取出一部分的数据,也就是取出“一片”或者“一条” 比如需要从二维数组里面抽取一列 取出来之后维度却变成了一维 假如我们需要将其还原为二维,就需要……