Python脚本的调试和分析实例讲解
- 更新时间:2020-05-05 15:21:07
- 编辑:尚春竹
调试和分析在Python开发中发挥重要作用 。调试器可帮助程序员分析完整的代码。调试器设置断点,而分析器运行我们的代码并向我们提供执行时间的详细信息,分析器将识别程序中的瓶颈。
Python调试技术
调试是一个解决代码中出现的问题并阻止软件正常运行的过程。在Python中,调试非常简单。Python调试器设置条件断点并一次调试一行源代码。我们将使用pdb Python标准库中的模块调试我们的Python脚本 。
为了更好地调试Python程序,可以使用各种技术。我们将讨论Python调试的四种技术:
- print() 声明:这是了解发生了什么的最简单方法,因此您可以检查已执行的内容。
- logging:这就像一个print声明,但有更多的上下文信息,所以你可以完全理解它。
- pdb debugger:这是一种常用的调试技术。使用的优点pdb是您可以pdb从命令行,解释器和程序中使用。
- IDE调试器:IDE具有集成调试器。它允许开发人员执行他们的代码,然后开发人员可以在程序执行时进行检查。
错误处理(异常处理)
在本节中,我们将学习Python如何处理异常。例外是程序执行期间发生的错误。每当发生任何错误时,Python都会生成一个异常,该异常将使用try ... except块进行处理。程序无法处理某些异常,因此会导致错误消息。现在,我们将看到一些异常示例。
在终端中,启动 python3交互式控制台,我们将看到一些异常示例:
student@ubuntu:~$ python3 Python 3.5.2 (default, Nov 23 2017, 16:37:01) [GCC 5.4.0 20160609] on linux Type "help", "copyright", "credits" or "license" for more information. >>> >>> 50 / 0 Traceback (most recent call last): File "", line 1, in ZeropisionError: pision by zero >>> >>> 6 + abc*5 Traceback (most recent call last): File "", line 1, in NameError: name 'abc' is not defined >>> >>> 'abc' + 2 Traceback (most recent call last): File "", line 1, in TypeError: Can't convert 'int' object to str implicitly >>> >>> import abcd Traceback (most recent call last): File "", line 1, in ImportError: No module named 'abcd' >>>
这些是例外的一些例子。现在,我们将看到我们如何处理异常。
每当Python程序中发生错误时,都会引发异常。我们还可以使用raise关键字强制引发异常。
现在我们将看到一个try…except处理异常的块。在try块中,我们将编写可能生成异常的代码。在except块中,我们将为该异常编写解决方案。
语法 try…except如下:
try: statement(s) except: statement(s)
一个try块可以有多个except语句。我们也可以通过在except关键字后面输入例外名称来处理特定的例外。处理特定异常的语法如下:
try: statement(s) except exception_name: statement(s)
我们将创建一个exception_example.py 要捕获的脚本ZeropisionError。在脚本中编写以下代码:
a = 35 b = 57 try: c = a + b print("The value of c is: ", c) d = b / 0 print("The value of d is: ", d) except: print("pision by zero is not possible") print("Out of try...except block")
按如下所示运行脚本,您将获得以下输出:
student@ubuntu:~$ python3 exception_example.py The value of c is: 92 pision by zero is not possible Out of try...except block
调试器工具
Python支持许多调试工具:
- winpdb
- pydev
- pydb
- pdb
- gdb
- pyDebug
在本节中,我们将学习pdb Python调试器。pdbmodule是Python标准库的一部分,始终可供使用。
pdb调试器
该pdb模块用于调试Python程序。Python程序使用pdb交互式源代码调试器来调试程序。pdb设置断点并检查堆栈帧,并列出源代码。
现在我们将了解如何使用pdb调试器。有三种方法可以使用此调试器:
· 在解释器中
· 从命令行
· 在Python脚本中
我们将创建一个pdb_example.py脚本并在该脚本中添加以下内容:
class Student: def __init__(self, std): self.count = std def print_std(self): for i in range(self.count): print(i) return if __name__ == '__main__': Student(5).print_std()
以此脚本为例学习Python调试,我们将看到如何详细启动调试器。
在解释器中
要从Python交互式控制台启动调试器,我们使用run()或runeval()。
启动python3交互式控制台。运行以下命令以启动控制台:
$ python3
导入我们的 pdb_example脚本名称和pdb模块。现在,我们将使用run()并且我们将字符串表达式作为参数传递给run()Python解释器本身:
student@ubuntu:~$ python3 Python 3.5.2 (default, Nov 23 2017, 16:37:01) [GCC 5.4.0 20160609] on linux Type "help", "copyright", "credits" or "license" for more information. >>> >>> import pdb_example >>> import pdb >>> pdb.run('pdb_example.Student(5).print_std()') > (1)() (Pdb)
要继续调试,请continue在(Pdb)提示符后输入并按Enter键。如果你想知道我们可以在这里使用的选项,那么在(Pdb)提示后按两次Tab 键。
现在,输入后continue,我们将获得如下输出:
student@ubuntu:~$ python3 Python 3.5.2 (default, Nov 23 2017, 16:37:01) [GCC 5.4.0 20160609] on linux Type "help", "copyright", "credits" or "license" for more information. >>> >>> import pdb_example >>> import pdb >>> pdb.run('pdb_example.Student(5).print_std()') > (1)() (Pdb) continue 0 1 2 3 4 >>>
从命令行
运行调试器的最简单,最直接的方法是从命令行。我们的程序将作为调试器的输入。您可以从命令行使用调试器,如下所示:
$ python3 -m pdb pdb_example.py
从命令行运行调试器时,将加载源代码,它将停止在找到的第一行执行。输入continue以继续调试。这是输出:
student@ubuntu:~$ python3 -m pdb pdb_example.py > /home/student/pdb_example.py(1)() -> class Student: (Pdb) continue 0 1 2 3 4 The program finished and will be restarted > /home/student/pdb_example.py(1)() -> class Student: (Pdb)
在Python脚本中
前两种技术将在Python程序开始时启动调试器。但这第三种技术最适合长期运行的流程。要在脚本中启动调试器,请使用set_trace()。
现在,修改您的pdb_example.py 文件,如下所示:
import pdb class Student: def __init__(self, std): self.count = std def print_std(self): for i in range(self.count): pdb.set_trace() print(i) return if __name__ == '__main__': Student(5).print_std()
现在,按如下方式运行程序:
student@ubuntu:~$ python3 pdb_example.py > /home/student/pdb_example.py(10)print_std() -> print(i) (Pdb) continue 0 > /home/student/pdb_example.py(9)print_std() -> pdb.set_trace() (Pdb)
set_trace() 是一个Python函数,因此您可以在程序中的任何位置调用它。
因此,这些是启动调试器的三种方式。
调试基本程序崩溃
在本节中,我们将看到跟踪模块。跟踪模块有助于跟踪程序执行。因此,每当您的Python程序崩溃时,我们都可以理解崩溃的位置。我们可以通过将跟踪模块导入您的脚本以及命令行来使用它。
现在,我们将创建一个名为脚本trace_example.py并在脚本中编写以下内容:
class Student: def __init__(self, std): self.count = std def go(self): for i in range(self.count): print(i) return if __name__ == '__main__': Student(5).go()
输出如下:
student@ubuntu:~$ python3 -m trace --trace trace_example.py --- modulename: trace_example, funcname: trace_example.py(1): class Student: --- modulename: trace_example, funcname: Student trace_example.py(1): class Student: trace_example.py(2): def __init__(self, std): trace_example.py(5): def go(self): trace_example.py(10): if __name__ == '__main__': trace_example.py(11): Student(5).go() --- modulename: trace_example, funcname: init trace_example.py(3): self.count = std --- modulename: trace_example, funcname: go trace_example.py(6): for i in range(self.count): trace_example.py(7): print(i) 0 trace_example.py(6): for i in range(self.count): trace_example.py(7): print(i) 1 trace_example.py(6): for i in range(self.count): trace_example.py(7): print(i) 2 trace_example.py(6): for i in range(self.count): trace_example.py(7): print(i) 3 trace_example.py(6): for i in range(self.count): trace_example.py(7): print(i) 4
因此,通过trace --trace在命令行使用,开发人员可以逐行跟踪程序。因此,只要程序崩溃,开发人员就会知道崩溃的实例。
分析和计时程序
分析Python程序意味着测量程序的执行时间。它衡量每个功能所花费的时间。Python的cProfile模块用于分析Python程序。
cProfile模块
如前所述,分析意味着测量程序的执行时间。我们将使用cProfile Python模块来分析程序。
现在,我们将编写一个 cprof_example.py 脚本并在其中编写以下代码:
mul_value = 0 def mul_numbers( num1, num2 ): mul_value = num1 * num2; print ("Local Value: ", mul_value) return mul_value mul_numbers( 58, 77 ) print ("Global Value: ", mul_value)
运行程序,您将看到如下输出:
student@ubuntu:~$ python3 -m cProfile cprof_example.py Local Value: 4466 Global Value: 0 6 function calls in 0.000 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 0.000 0.000 cprof_example.py:1() 1 0.000 0.000 0.000 0.000 cprof_example.py:2(mul_numbers) 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec} 2 0.000 0.000 0.000 0.000 {built-in method builtins.print} 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
因此,使用时cProfile,所有被调用的函数都将打印出每个函数所花费的时间。现在,我们将看到这些列标题的含义:
· ncalls: 通话次数
· tottime: 在给定函数中花费的总时间
· percall:商数tottime除以ncalls
· cumtime:在此和所有方面花费的累计时间 subfunctions
· percall:cumtime除以原始调用的商数
· filename:lineno(function):提供每个功能的相应数据
timeit
timeit是一个Python模块,用于计算Python脚本的一小部分。您可以从命令行调用timeit,也可以将timeit模块导入到脚本中。我们将编写一个脚本来计算一段代码。创建一个timeit_example.py脚本并将以下内容写入其中:
import timeit prg_setup = "from math import sqrt" prg_code = ''' def timeit_example(): list1 = [] for x in range(50): list1.append(sqrt(x)) ''' # timeit statement print(timeit.timeit(setup = prg_setup, stmt = prg_code, number = 10000))
使用timeit,我们可以决定我们要测量的代码片段。因此,我们可以轻松定义设置代码以及我们要单独执行测试的代码段。主代码运行100万次,这是默认时间,而设置代码只运行一次。
使程序运行得更快
有多种方法可以使Python程序运行得更快,例如:
- 描述您的代码,以便识别瓶颈
- 使用内置函数和库,因此解释器不需要执行循环
- 避免使用全局变量,因为Python在访问全局变量时非常慢
- 使用现有包
以上就是Python脚本的调试和分析(代码示例)的详细内容,更多请关注码农之家其它相关文章!
相关教程
-
解决nohup后台启动Python脚本后log不刷新的问题
今天小编就为大家分享一篇nohup后台启动Python脚本,log不刷新的解决方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
发布时间:2019-09-07
-
python爬虫实现校园网自动重连脚本的方法
下面小编就为大家分享一篇python爬虫_实现校园网自动重连脚本的教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
发布时间:2020-02-10
-
在Shell脚本中检查Python版本的方法
Python是由Guido van Rossum创建的高级通用编程语言。它于1991年首次发行。通常,基于Linux的发行版已经预装了Python版本。 本教程将帮助您在脚本中找到Python版本的详细信息。此外,还可以确保Pyt
发布时间:2019-10-19
-
python脚本的定义知识点
Python是一种脚本语言,而python脚本就是一个使用python 语言编写的,以.py 结尾的文件;该.py文件中包含着一整段 python 程序。
发布时间:2019-07-03
-
Python读取excel指定列生成指定sql脚本的思路和方法
今天小编就为大家分享一篇Python读取excel指定列生成指定sql脚本的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
发布时间:2019-06-06
-
Python神经网络编程
这是一本自己动手用Python编写神经网络的力作,详细介绍了理解神经网络如何工作所必须的基础知识,并介绍了所需的微积分知识和树莓派知识,欢迎下载
大小:11.5 MBPython编程电子书
-
Python机器学习及实践:从零开始通往Kaggle竞赛之路
Python机器学习及实践 面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且
大小:48.3 MB机器学习电子书
-
Python编程入门(第3版)
大小:3285 MB MBPython
-
Python编程:从入门到实践
《Python编程:从入门到实践》是Python3.5编程入门图书(从入门到实践),机器学习,数据处理,网络爬虫热门编程语言,从基本概念到完整项目开发,帮助零基础读者迅速掌握Python编程。
大小:9.85MPython入门电子书
-
跟老齐学Python:轻松入门
本书是数十套结合课件的Python教学代码,本书是Python语言的入门读物,旨在引导初学者能够在轻松的环境中,掌握Python的基础知识
大小:46.6 MBPython入门电子书
-
Python基础教程(第3版)
本书是一本Python3.5编程从入门到实践书籍,Python入门佳作,包括Python程序设计的方方面面,既能为初学者夯实基础,又能帮助程序员提升技能
大小:10.1 MBpython电子书
-
Python从小白到大牛
PyCharm厂家JetBrains公司官方推荐用书!赠送教学课件24章,300个示例源代码,4个完整实战项目,教学视频2500分钟!并提供实时在线答疑服务!
大小:235.4 MBpython电子书
-
python绝技:运用python成为顶级黑客
大小:42 MBpython电子书
-
Python3智能数据分析快速入门
Python3智能数据分析快速入门 (1)深度学习等AI技术性驱动器的智能化数据统计分析是数据统计分析制造行业的将来发展前景,全部数据分析师都应当关心。 (2)创作者从业数据统计分析与发
大小:3.1 MBPython3电子书
-
Python Django Web典型模块开发实战
腾讯云服务社区/阿里巴巴云栖社区栏目创作者Django全栈开发心得分享 详细说明DjangoWeb开发设计中11个常见典型性控制模块的开发设计全过程 协助你变成一位Django全栈开发的高手级程序猿 项目
大小:19.6 MBPython开发