当前位置:首页 > >
《Spark与Hadoop大数据分析》电子书封面

Spark与Hadoop大数据分析

  • 发布时间:2019年04月23日 10:32:19
  • 作者:文卡特·安卡姆
  • 大小:28.5 MB
  • 类别:数据分析电子书
  • 格式:PDF
  • 版本:超清影印版
  • 评分:7.5

    Spark与Hadoop大数据分析 PDF 超清影印版

      给大家带来的一篇关于数据分析相关的电子书资源,介绍了关于Spark、Hadoop、大数据分析方面的内容,本书是由机械工业出版社出版,格式为PDF,资源大小28.5 MB,文卡特·安卡姆编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:8.1分

      Tags:

      内容介绍

      Spark与Hadoop大数据分析

      Spark与Hadoop大数据分析 电子书封面

      读者评价

      数据科学家参考指南,深度剖析了如何利用高效的Spark提升Hadoop生态系统的实时性,提升大数据处理能力 

      内容介绍

      Spark与Hadoop大数据分析比较系统地讲解了利用Hadoop和Spark及其生态系统里的一系列工具进行大数据分析的方法,既涵盖ApacheSpark和Hadoop的基础知识,又深入探讨所有Spark组件——SparkCore、SparkSQL、DataFrame、DataSet、普通流、结构化流、MLlib、Graphx,以及Hadoop的核心组件(HDFS、MapReduce和Yarn)等,并配套详细的实现示例,是快速掌握大数据分析基础架构及其实施方法的详实参考。

      全书共10章,第1章从宏观的角度讲解大数据分析的概念,并介绍在Hadoop和Spark平台上使用的工具和技术,以及一些*常见的用例;第2章介绍Hadoop和Spark平台的基础知识;第3章深入探讨并学习Spark;第4章主要介绍DataSourcesAPI、DataFrameAPI和新的DatasetAPI;第5章讲解如何用SparkStreaming进行实时分析;第6章介绍Spark和Hadoop配套的笔记本和数据流;第7章讲解Spark和Hadoop上的机器学习技术;第8章介绍如何构建推荐系统;第9章介绍如何使用GraphX进行图分析;第10章介绍如何使用SparkR。

      内容节选

      浅谈七种常见的Hadoop和Spark项目案例

      有一句古老的格言是这样说的,如果你向某人提供你的全部支持和金融支持去做一些不同的和创新的事情,他们最终却会做别人正在做的事情。如比较火爆的Hadoop、Spark和Storm,每个人都认为他们正在做一些与这些新的大数据技术相关的事情,但它不需要很长的时间遇到相同的模式。具体的实施可能有所不同,但根据我的经验,它们是最常见的七种项目。

      项目一:数据整合

      称之为“企业级数据中心”或“数据湖”,这个想法是你有不同的数据源,你想对它们进行数据分析。这类项目包括从所有来源获得数据源(实时或批处理)并且把它们存储在hadoop中。有时,这是成为一个“数据驱动的公司”的第一步;有时,或许你仅仅需要一份漂亮的报告。“企业级数据中心”通常由HDFS文件系统和HIVE或IMPALA中的表组成。未来,HBase和Phoenix在大数据整合方面将大展拳脚,打开一个新的局面,创建出全新的数据美丽新世界。

      销售人员喜欢说“读模式”,但事实上,要取得成功,你必须清楚的了解自己的用例将是什么(Hive模式不会看起来与你在企业数据仓库中所做的不一样)。真实的原因是一个数据湖比Teradata和Netezza公司有更强的水平扩展性和低得多的成本。许多人在做前端分析时使用Tabelu和Excel。许多复杂的公司以“数据科学家”用Zeppelin或IPython笔记本作为前端。

      项目二:专业分析

      许多数据整合项目实际上是从你特殊的需求和某一数据集系统的分析开始的。这些往往是令人难以置信的特定领域,如在银行领域的流动性风险/蒙特卡罗模拟分析。在过去,这种专业的分析依赖于过时的,专有的软件包,无法扩大数据的规模经常遭受一个有限的功能集(大部分是因为软件厂商不可能像专业机构那样了解的那么多)。

      在Hadoop和Spark的世界,看看这些系统大致相同的数据整合系统,但往往有更多的HBase,定制非SQL代码,和更少的数据来源(如果不是唯一的)。他们越来越多地以Spark为基础。

      项目三:Hadoop作为一种服务

      在“专业分析”项目的任何大型组织(讽刺的是,一个或两个“数据整理”项目)他们会不可避免地开始感觉“快乐”(即,疼痛)管理几个不同配置的Hadoop集群,有时从不同的供应商。接下来,他们会说,“也许我们应该整合这些资源池,”而不是大部分时间让大部分节点处于资源闲置状态。它们应该组成云计算,但许多公司经常会因为安全的原因(内部政治和工作保护)不能或不会。这通常意味着很多Docker容器包。

      我没有使用它,但最近Bluedata(蓝色数据国际中心)似乎有一个解决方案,这也会吸引小企业缺乏足够的资金来部署Hadoop作为一种服务。

      项目四:流分析

      很多人会把这个“流”,但流分析是不同的,从设备流。通常,流分析是一个组织在批处理中的实时版本。以反洗钱和欺诈检测:为什么不在交易的基础上,抓住它发生而不是在一个周期结束?同样的库存管理或其他任何。
      在某些情况下,这是一种新的类型的交易系统,分析数据位的位,因为你将它并联到一个分析系统中。这些系统证明自己如Spark或Storm与Hbase作为常用的数据存储。请注意,流分析并不能取代所有形式的分析,对某些你从未考虑过的事情而言,你仍然希望分析历史趋势或看过去的数据。

      项目五:复杂事件处理

      在这里,我们谈论的是亚秒级的实时事件处理。虽然还没有足够快的超低延迟(皮秒或纳秒)的应用,如高端的交易系统,你可以期待毫秒响应时间。例子包括对事物或事件的互联网电信运营商处理的呼叫数据记录的实时评价。有时,你会看到这样的系统使用Spark和HBase——但他们一般落在他们的脸上,必须转换成Storm,这是基于由LMAX交易所开发的干扰模式。
      在过去,这样的系统已经基于定制的消息或高性能,从货架上,客户端-服务器消息产品-但今天的数据量太多了。我还没有使用它,但Apex项目看起来很有前途,声称要比Storm快。

      项目六:ETL流

      有时你想捕捉流数据并把它们存储起来。这些项目通常与1号或2号重合,但增加了各自的范围和特点。(有些人认为他们是4号或5号,但他们实际上是在向磁盘倾倒和分析数据。),这些几乎都是Kafka和Storm项目。Spark也使用,但没有理由,因为你不需要在内存分析。

      项目七:更换或增加SAS

      SAS是精细,是好的但SAS也很贵,我们不需要为你的数据科学家和分析师买存储你就可以“玩”数据。此外,除SAS可以做或产生漂亮的图形分析外,你还可以做一些不同的事情。这是你的“数据湖”。这里是IPython笔记本(现在)和Zeppelin(以后)。我们用SAS存储结果。

      当我每天看到其他不同类型的Hadoop,Spark,或Storm项目,这些都是正常的。如果你使用Hadoop,你可能了解它们。几年前我已经实施了这些项目中的部分案例,使用的是其它技术。

      如果你是一个老前辈太害怕“大”或“做”大数据Hadoop,不要担心。事情越变越多,但本质保持不变。你会发现很多相似之处的东西你用来部署和时髦的技术都是围绕Hadooposphere旋转的。

      原文作者:Andrew C. Oliver,Andrew C. Oliver是一个专业的牧猫人兼职为一个软件顾问。他是MammothData的总裁和创始人(原开放软件集成商),一个坐落于达勒姆,北卡罗来纳州的大数据咨询公司。

      目录

      • 第1章 从宏观视角看大数据分析 1
      • 第2章 Apache Hadoop和Apache Spark入门 13
      • 第3章 深入剖析Apache Spark 37
      • 第4章 利用Spark SQL、Data-Frame和Dataset进行大数据分析 69
      • 第5章 利用Spark Streaming和Structured Streaming进行实时分析 102
      • 第6章 利用Spark和Hadoop的笔记本与数据流 130
      • 第7章 利用Spark和Hadoop进行机器学习 153
      • 第8章 利用Spark和Mahout构建推荐系统 171
      • 第9章 利用GraphX进行图分析 190
      • 第10章 利用SparkR进行交互式分析

      以上就是本次介绍的数据分析电子书的全部相关内容,希望我们整理的资源能够帮助到大家,感谢大家对码农之家的支持。

      上一篇:大嘴巴漫谈数据挖掘:第2季产品篇

      下一篇:和秋叶一起学PPT

      展开 +

      收起 -

      下载地址:百度网盘下载
      读者心得
      网友NO.44336
      网友NO.44336

      Hadoop框架的主要模块包括如下: Hadoop Common Hadoop分布式文件系统(HDFS) Hadoop YARN Hadoop MapReduce 虽然上述四个模块构成了Hadoop的核心,不过还有其他几个模块。这些模块包括:Ambari、Avro、Cassandra、Hive、 Pig、Oozie、Flume和Sqoop,它们进一步增强和扩展了Hadoop的功能。 Spark确实速度很快(最多比Hadoop MapReduce快100倍)。Spark还可以执行批量处理,然而它真正擅长的是处理流工作负载、交互式查询和机器学习。 相比MapReduce基于磁盘的批量处理引擎,Spark赖以成名之处是其数据实时处理功能。Spark与Hadoop及其模块兼容。实际上,在Hadoop的项目页面上,Spark就被列为是一个模块。 Spark有自己的页面,因为虽然它可以通过YARN(另一种资源协调者)在Hadoop集群中运行,但是它也有一种独立模式。它可以作为 Hadoop模块来运行,也可以作为独立解决方案来运行。 MapReduce和Spark的主要区别在于,MapReduce使用持久存储,而Spark使用弹性分布式数据集(RDDS)。 性能 Spark之所以如此快速,原因在于它在内存中处理一切数据。没错,它还可以使用磁盘来处理未全部装入到内存中的数据。 Spark的内存处理为来自多个来源的数据提供了近乎实时分析的功能:营销活动、机器学习、物联网传感器、日志监控、安全分析和社交媒体网站。另 外,MapReduce使用批量处理,其实从来就不是为惊人的速度设计的。它的初衷是不断收集来自网站的信息,不需要这些数据具有实时性或近乎实时性。 易用性 支持Scala(原生语言)、Java、Python和Spark SQL。Spark SQL非常类似于SQL 92,所以几乎不需要经历一番学习,马上可以上手。 Spark还有一种交互模式,那样开发人员和用户都可以获得查询和其他操作的即时反馈。MapReduce没有交互模式,不过有了Hive和Pig等附加模块,采用者使用MapReduce来得容易一点。 成本 “Spark已证明在数据多达PB的情况下也轻松自如。它被用于在数量只有十分之一的机器上,对100TB数据进行排序的速度比Hadoop MapReduce快3倍。”这一成绩让Spark成为2014年Daytona GraySort基准。 兼容性 MapReduce和Spark相互兼容;MapReduce通过JDBC和ODC兼容诸多数据源、文件格式和商业智能工具,Spark具有与MapReduce同样的兼容性。 数据处理 MapReduce是一种批量处理引擎。MapReduce以顺序步骤来操作,先从集群读取数据,然后对数据执行操作,将结果写回到集群,从集群读 取更新后的数据,执行下一个数据操作,将那些结果写回到结果,依次类推。Spark执行类似的操作,不过是在内存中一步执行。它从集群读取数据后,对数据 执行操作,然后写回到集群。 Spark还包括自己的图形计算库GraphX​​。GraphX让用户可以查看与图形和集合同样的数据。用户还可以使用弹性分布式数据集(RDD),改变和联合图形,容错部分作了讨论。

      码农之家

      焦燕婉 提供上传

      资源
      47
      粉丝
      35
      喜欢
      136
      评论
      17

      Copyright 2018-2021 www.xz577.com 码农之家

      版权投诉 / 书籍推广:520161757@qq.com