当前位置:首页 > 热门标签 > 深度学习

深度学习

本标签包含:29篇文章

本专题中精选深度学习相关文档、视频、软件、源码等资源以及技术教程文章,更多相关内容陆续增加,建议收藏本栏目,本站整理包含深度学习的内容共计29个,剩余292个等待更新。

深度学习入门:基于Python的理论与实现

本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学

查看详情
深度学习、优化与识别

深度神经网络是近年来受到广泛关注的研究方向,它已成为人工智能2.0的主要组成部分。本书系统地论述了深度神经网络基本理论、算法及应用。全书共16章,分为两个部分;第一部分(第1章

查看详情
深度学习入门之PyTorch 查看详情
MATLAB计算机视觉与深度学习实战 查看详情
深度学习:主流框架和编程实战 查看详情
深度学习原理与TensorFlow实践

深度学习原理与TensorFlow实践 主要介绍了深度学习的基础原理和TensorFlow系统基本使用方法。TensorFlow是目前机器学习、深度学习领域最优秀的计算系统之一,本书结合实例介绍了使用TensorFlow开发

查看详情
深度学习:Java语言实现 查看详情
深度学习原理与实践

《深度学习原理与实践》 详细介绍了目前深度学习相关的常用网络模型(ANN、CNN、RNN),以及不同网络模型的算法原理和核心思想。本书利用大量的实例代码对网络模型进行了分析,这些案例

查看详情
深度学习:Caffe之经典模型详解与实战

《深度学习Caffe之经典模型详解与实战》 首先介绍了深度学习相关的理论和主流的深度学习框架,然后从Caffe深度学习框架为切入点,介绍了Caffe的安装、配置、编译和接口等运行环境,剖析

查看详情
深度学习:卷积神经网络从入门到精通 查看详情
深度学习技术图像处理入门 查看详情
深度学习实战

1.这书去繁化简地对深度神经网络的基础知识开展整理,并对优化算法保持作出通俗易懂的解读,便捷新手学习培训。 2.这书用心选择很多深度神经网络的实例,根据启发式的通过自学方式,使

查看详情
深度学习算法实践(基于Theano和TensorFlow)

1.中科院院士工程院院士陈志杰倾心作序,业内专家黄文涛、陈晓禾联手力荐。 2.以深度学习算法新手入门为主题思想,以NumPy、SciPy等科学计算库,深度神经网络流行优化算法,深度神经网络

查看详情
深度学习 21天实战Caffe

《 深度学习:21天实战Caffe 》是一本深度学习入门读物。以目前已经大量用于线上系统的深度学习框架Caffe为例,由浅入深,从 Caffe 的配置、部署、使用开始学习,通过阅读Caffe源码理解其精髓

查看详情
大数据架构详解:从数据获取到深度学习

《大数据架构详解:从数据获取到深度学习》 从架构、业务、技术三个维度深入浅出地介绍了大数据处理领域端到端的知识。主要内容包括三部分:第一部分从数据的产生、采集、计算、存储

查看详情
深度学习实践:计算机视觉

本书主要介绍了深度学习在计算机视觉方面的应用及工程实践,以Python 3为开发语言,并结合当前主流的深度学习框架进行实例展示。

查看详情
深度学习:从入门到实战

本书从12个落地实践角度精炼阐述深度学习方法论解析与核心技术;22个经典案例融入11个综合案例,全面构建深度学习实践框架,切实提升开发技能,积累开发经验

查看详情
PyTorch深度学习实战

这本书从原理到实战、深入浅出地介绍了Facebook人工智能利器Pytorch的卓越表现,主要定位为具有一定Python编程基础,对机器学习和神经网络有一定了解的程序员们

查看详情
图解深度学习与神经网络

本书是以TensorFlow 为工具介绍神经网络和深度学习的入门书,内容循序渐进,以简单示例和图例的形式,展示神经网络和深度学习背后的数学基础原理,帮助读者更好地理解复杂抽象的公式。

查看详情
PaddlePaddle与深度学习应用实战

本书由简单的例子引入深度学习和PaddlePaddle框架通过一系列深度学习项目实例,介绍PaddlePaddle在各种场景和问题中的应用,让读者由浅至深地理解并运用深度学习解决实际问题

查看详情
基于深度学习的自然语言处理

本书将深度学习技术应用于自然语言处理的实用指南,系统阐述将深度学习技术应用于自然语言处理的方法和技术,深入浅出地介绍了深度学习的基本知识及各种常用的网络结构等方面

查看详情
深度学习导论及案例分析

本书介绍了深度学习的起源和发展、强调了深层网络的特点和优势,详述了深度学习的9种重要模型及其学习算法、变种模型和混杂模型,可作为具备神经网络基础知识后进一步了解深度学习理论和方法的入门教材或导论性参考书

查看详情
神经网络与深度学习应用实战

本书结合实际应用介绍神经网络和深度学习等技术领域相关信息。从结构上重点介绍了前馈型神经网络、反馈型神经网络,以及自组织竞争型神经网络,并针对当下深度学习中比较重要的网络进

查看详情
深度学习之美:AI时代的数据处理与最佳实践

零入门 | 高可读| 重实战 | 抓前沿!准受用的深度学习入门教程,集各项前沿技术之大成,含Hinton神经胶囊网络的详细解读!

查看详情
深度学习之PyTorch实战计算机视觉

计算机视觉、自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向,本书旨在帮助零基础或基础较为薄弱的读者入门深度学习,达到能够独立使用深度学习知识处理计算机视觉问

查看详情
229
首页 1 2 下一页 末页
深度学习 笔记精选
网友NO.197703

PyTorch的深度学习入门之PyTorch安装和配置

前言 深度神经网络是一种目前被广泛使用的工具,可以用于图像识别、分类,物体检测,机器翻译等等。深度学习(DeepLearning)是一种学习神经网络各种参数的方法。因此,我们将要介绍的深度学习,指的是构建神经网络结构,并且运用各种深度学习算法训练网络参数,进而解决各种任务。本文从PyTorch环境配置开始。PyTorch是一种Python接口的深度学习框架,使用灵活,学习方便。还有其他主流的深度学习框架,例如Caffe,TensorFlow,CNTK等等,各有千秋。笔者认为,初期学习还是选择一种入门,不要期望全都学会。须知,发力集中才能深入挖掘。乱花渐欲迷人眼,选择适合自己的,从一而终,相信会对科研大有裨益! *************************************************** 说明:本文乃至本系列全部文章都是在PyTorch0.2版本下做的。现在版本更新了很多,会有一些API的更改……

网友NO.666264

Spring cloud Feign 深度学习与应用详解

简介 Spring Cloud Feign是一个声明式的Web Service客户端,它的目的就是让Web Service调用更加简单。Feign提供了HTTP请求的模板,通过编写简单的接口和插入注解,就可以定义好HTTP请求的参数、格式、地址等信息。Feign会完全代理HTTP请求,开发时只需要像调用方法一样调用它就可以完成服务请求及相关处理。开源地址:https://github.com/OpenFeign/feign。Feign整合了Ribbon负载和Hystrix熔断,可以不再需要显式地使用这两个组件。总体来说,Feign具有如下特性: 可插拔的注解支持,包括Feign注解和JAX-RS注解; 支持可插拔的HTTP编码器和解码器; 支持Hystrix和它的Fallback; 支持Ribbon的负载均衡; 支持HTTP请求和响应的压缩。 Spring Cloud Feign致力于处理客户端与服务器之间的调用需求。随着业务的扩展和微服务数量的增多,不可避免的需要面对如下问题: 弹性客户端 雪崩效应 简单来说……

网友NO.938022

TensorFlow深度学习之卷积神经网络CNN

一、卷积神经网络的概述 卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在理论上具有对图像缩放、平移和旋转的不变性。 卷积神经网络CNN的要点就是局部连接(LocalConnection)、权值共享(Weights Sharing)和池化层(Pooling)中的降采样(Down-Sampling)。其中,局部连接和权值共享降低了参数量,使训练复杂度大大下降并……

网友NO.704803

Python编程深度学习计算库之numpy

NumPy是python下的计算库,被非常广泛地应用,尤其是近来的深度学习的推广。在这篇文章中,将会介绍使用numpy进行一些最为基础的计算。 NumPy vs SciPy NumPy和SciPy都可以进行运算,主要区别如下 最近比较热门的深度学习,比如在神经网络的算法,多维数组的使用是一个极为重要的场景。如果你熟悉tensorflow中的tensor的概念,你会非常清晰numpy的作用。所以熟悉Numpy可以说是使用python进行深度学习入门的一个基础知识。 安装 liumiaocn:tmp liumiao$ pip install numpyCollecting numpy Downloading https://files.pythonhosted.org/packages/b6/5e/4b2c794fb57a42e285d6e0fae0e9163773c5a6a6a7e1794967fc5d2168f2/numpy-1.14.5-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.7MB) 100% |████████████████████████████████| 4.7MB 284kB/s Installing collecte……

网友NO.453569

Dlib+OpenCV深度学习人脸识别的方法示例

前言 人脸识别在LWF(Labeled Faces in the Wild)数据集上人脸识别率现在已经99.7%以上,这个识别率确实非常高了,但是真实的环境中的准确率有多少呢?我没有这方面的数据,但是可以确信的是真实环境中的识别率并没有那么乐观。现在虽然有一些商业应用如员工人脸识别管理系统、海关身份验证系统、甚至是银行人脸识别功能,但是我们可以仔细想想员工人脸识别管理,海关身份证系统的应用场景对身份的验证功能其实并没有商家吹嘘的那么重要,打个比方说员工上班的时候刷脸如果失败了会怎样,是不是重新识别一下,如果还是误识别,或是识别不出,是不是就干脆刷卡或是其他方式登记上班,然后骂一句他娘的,本人那么帅居然没识别出来!那银行柜员机上人脸识别系统呢,你看它敢不敢让你连密码也不输直接刷脸转账,是不是关掉了人脸识别、指……

网友NO.522674

PyTorch的深度学习入门教程之构建神经网络

前言 本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。 Part3:使用PyTorch构建一个神经网络 神经网络可以使用touch.nn来构建。nn依赖于autograd来定义模型,并且对其求导。一个nn.Module包含网络的层(layers),同时forward(input)可以返回output。 这是一个简单的前馈网络。它接受输入,然后一层一层向前传播,最后输出一个结果。 训练神经网络的典型步骤如下: (1) 定义神经网络,该网络包含一些可以学习的参数(如权重) (2) 在输入数据集上进行迭代 (3) 使用网络对输入数据进行处理 (4) 计算loss(输出值距离正确值有多远) (5) 将梯度反向传播到网络参数中 (6) 更新网络的权重,使用简单的更新法则:weight = weight - learning_rate* gradient,即:新的权重=旧的权重-学习率*梯度值。……

Copyright 2018-2020 xz577.com 码农之家

本站所有电子书资源不再提供下载地址,只分享来路

免责声明:网站所有作品均由会员网上搜集共同更新,仅供读者预览及学习交流使用,下载后请24小时内删除

版权投诉 / 书籍推广 / 赞助:QQ:520161757